Tone Mapping for HDR Images with Dimidiate Luminance and Spatial Distributions of Bright and Dark Regions

SPIE Electronic Imaging 2012

Masaki Kitaura, Fumio Okura, Masayuki Kanbara and Naokazu Yokoya

Presented by Dae-Chul Kim

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

Proposed method

- Novel tone mapping method
 - Considering characteristics of human visual perception for HDR image
 - Dimidiated luminance
 - Spatial distribution of bright and dark region

- Proposed method
 - Dividing HDR image into bright and dark regions
 - Applying different tone mapping function to each region
Introduction

- High dynamic range imaging
 - Purpose of HDR image
 - Attracting much attention to capturing image
 - Precisely representation about real scenes
 - Producing HDR image
 - Combination of multiple images
 - Capturing low dynamic range (LDR) image with different exposure setting

- Necessity of tone mapping in HDR image
 - Display HDR image on standard LDR display
 - Compressing dynamic range of HDR image
Previous method of tone mapping

- Reinhard et al.
 - Proposed method
 - Applying Zone system and dodging-and-burning
 - Drawback of Reinhard’s method
 - Limitation of representing textures contrast
 » Not enough textures of bright and dark regions in HDR image

- Fattal et al.
 - Proposed method
 - Focus on change of gradient
 - Representing detailed textures of HDR image
 » Compressing higher part more than lower contrast parts
 - Drawback of Fattal’s method
 - Limitation of dynamic range to generating LDR image
 - Restriction to keep magnitude relationship
 » between luminance value pixels in image
Yee et al, Chen et al, and Krawczyk et al

- Based on local adaptation mechanism in human visual perception
- Proposed method
 - Dividing HDR image into regions
 » Based on luminance distribution
 - Applying tone mapping
 » Computing local adaptation luminance
- Drawback of this method
 - Limitation of representing real scene
 » Amount of change of luminance values
Proposed method

- Tone mapping method for HDR image
 - Considering dimidiate luminance
 - Considering spatial distribution of bright and dark region
- Example image
 - Capturing image in scene where both outdoor and indoor conditions exist.

Fig. 1. An example of image with dimidiate luminance and spatial distributions of bright and dark regions.
– Proposing tone mapping curve
 • Representing relationship of luminance value between HDR and LDR images

Fig. 2. Tone mapping curves
Tone mapping applied to dimidiate bright and dark regions independently

- Outline of proposed tone mapping method
 - Aim to proposed method
 - Applying different tone mapping with dark and bright region
 - Process of proposed method
 - Segmentation of HDR image into bright and dark regions
 - Conversion of luminance values in bright and dark region
Segmentation of HDR image into bright and dark regions
- Dividing images dark and bright region
 - Considering regions interactively and boundaries of regions
- Using GrabCut algorithm for segmentation
 - Using iterative graph cut
 - Requiring user's interactions

Fig. 3. An example of segmenting Figure 1 by GrabCut
Conversion of luminance values in bright and dark regions
- Applying different tone mapping with dark and bright regions
 - Using Reinhard method
 - Log-average luminance value
 \[
 \bar{L}_w = \frac{1}{N} \exp \left(\sum_{x,y} \log \left(\delta + L_w(x, y) \right) \right)
 \] (1)
 where \(L_w(x, y) \) is input luminance value for pixel \((x, y)\),
 \(N \) is total number of pixels in image
 \(\delta \) is small value to avoid singularity that occurs if black pixel
 exist in image
 - Scale of whole image
 \[
 L(x, y) = \frac{a}{\bar{L}_w} L_w(x, y)
 \] (2)
 where \(L_w(x, y) \) is scaled luminance value and \(a \) is parameter
• Compressing luminance value

\[L_d(x, y) = \frac{L(x, y)}{1 + L(x, y)} \] \hspace{1cm} (3)

where \(L_d(x, y) \) is the luminance value after scaling

\[L_d(x, y) = \frac{L(x, y)\left(1 + \frac{L(x, y)}{L_{white}^2}\right)}{1 + L(x, y)} \] \hspace{1cm} (4)

where \(L_{white} \) represent smallest luminance value
Experiments results

- Result image of proposed method
 - Comparison with previous methods

Fig. 5. Result of tone mapping with the image supposed to be suitable for the proposed method: lab.
Comparison with previous methods

Fig. 6. Result of tone mapping with the image supposed to be suitable for the proposed method: room.
- Comparison with previous methods

Fig.7. Result of tone mapping with the image supposed to be suitable for the proposed method: memorial.

(a) Reinhard
(b) Fattal
(c) Proposed method
- Degree of satisfaction in subjective evaluation
 - Using suitable HDR image

Fig. 8. The degree of satisfaction in subjective evaluation with HDR images suitable for the proposed method
• Using suitable HDR image

Fig. 8. The degree of satisfaction in subjective evaluation with HDR images suitable for the proposed method
• Using suitable HDR image

Fig. 8. The degree of satisfaction in subjective evaluation with HDR images suitable for the proposed method.
• Using suitable HDR image

Fig. 8. The degree of satisfaction in subjective evaluation with HDR images suitable for the proposed method
- Degree of satisfaction in subjective evaluation
 - Using suitable or unsuitable HDR image

Fig. 9. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method
• Using suitable or unsuitable HDR image

Fig. 9. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method
Using suitable or unsuitable HDR image

Fig. 9. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method.
• Using suitable or unsuitable HDR image

Fig. 9. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method

Reinhard	**Fattal**	**Proposed method**
- Degree of satisfaction in subjective evaluation
 - Using unsuitable HDR image

Fig. 10. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method
• Using unsuitable HDR image

Fig. 10. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method.
• Using unsuitable HDR image

Fig. 10. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method
– Using unsuitable HDR image

Fig.10. The degree of satisfaction in subjective evaluation with HDR images suitable or unsuitable for the proposed method
Conclusions

- Proposed method
 - Novel tone mapping method
 ● Considering characteristics of human visual perception for HDR image
 - Dimidiated luminance
 - Spatial distribution of bright and dark region
 - Proposed method
 ● Dividing HDR image into bright and dark regions
 ● Applying different tone mapping function to each region