Multipsectral High Dynamic Range Imaging

IS&T/SPIE Electronic Imaging,
2008
Johannes Brauers, Nils Schulte, Andre A. Bell, and Til Aach

Presented by Ji-Hoon Yoo

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

- Capturing natural scene with high dynamic range content
 - Conventional method
 • Using conventional RGB cameras
 - Appearance of saturated and underexposed areas
 - Appearing lacks of color accuracy
 - Proposed method
 • Application of high dynamic imaging
 - Increase of dynamic range
 » Combining several RGB images of different exposures into one image
 - Improvement of color accuracy
 » Using multispectral camera
Introduction

- Drawback of the most common camera type
 - Appearance of systematic color error
 - Because of violating Luther rule
 - Disadvantage from camera filter array
 - Requiring spatial interpolation of color information
 - Appearance of shift variance
Multispectral camera
 - Providing greatly improved color accuracy
 • Application of wheel with optical bandpass filters between lens and gray level imaging sensor

Fig. 1. Our multispectral camera (left) and a sketch of its internal configuration (right).
- Approach of multispectral HDR imaging
 - Method using two RGB cameras
 - Composition
 - Use of half mirror
 » Division of light
 - Use of neutral density filter
 » Controlling amount of light
 - Use of different interference filters
 » Filtering specific spectrum
 - Disadvantage
 - Using limited number of two exposure levels
 - Appearing saturation in one half of passband
 - Proposed method
 - No limitation about certain number of exposure levels
 - Acquisition of full spectral range for each exposure level
 - Providing greater dynamic range
Acquisition model for HDR imaging

- Mathematical model of the imaging chain

Fig. 2. Diagram of physical model using continuous variables.
– Optical bandpass filters and camera transfer function

Fig. 3. Spectral and radiometric characteristic curves of our multispectral camera. (a) Joint spectral characteristics $H_i(\lambda)$ of optical bandpass filters $T_i(\lambda)$ and sensor $R(\lambda)$. (b) Camera transfer function f of our internal gray level camera Sony XCD-SX900.
- Spectral irradiance reaching sensor surface

\[E_i(\lambda) = S(\lambda) \beta(\lambda) o(\lambda) \tau_i(\lambda) \quad (1) \]

- Spectral radiant power

\[\phi(\lambda) = E_i(\lambda) R(\lambda) A \quad (2) \]

- Integrating over whole wavelength range

\[\phi_i = \int_\lambda \phi(\lambda)d\lambda = \int_\lambda S(\lambda) \beta(\lambda) o(\lambda) a\tau_i(\lambda) R(\lambda) Ad\lambda \quad (3) \]

- Spectral radiant energy

\[Q_{i,j} = \phi_i T_{i,j} \quad (4) \]
– Final camera value
 • Application of CTF
 – Opto-electronic conversion of radiant energy to camera value

\[q_{i,j} = f(Q_{i,j}) \] \hspace{1cm} (5)

• Combination of Eq. (1) to (5)

\[q_{i,j} = f(T_{i,j} \int S(\lambda) \beta(\lambda) o(\lambda) a\tau_i(\lambda) R(\lambda) Ad\lambda) \] \hspace{1cm} (6)

• Simplification of Eq. (6)

\[q_{i,j} = f(T_{i,j} \int kH_i(\lambda) S(\lambda) \beta(\lambda) d\lambda) \] \hspace{1cm} (7)
Discrete representation of imaging chain

- Sampling wavelength range from $\lambda_1=400\text{nm}$ to $\lambda_N=700\text{nm}$

 • Expression of Eq. (4) and (5) by matrix notation

 $$q_{i,j} = f(T_j \phi)$$ \hspace{1cm} (8)

 - Inserting Eq. (9) to (8)

 $$\phi = kHS\beta$$ \hspace{1cm} (9)

 • Expression of complete model from Eq. (7)

 $$q_j = f(T_jkHS\beta)$$ \hspace{1cm} (10)
- Expression of integration in Eq.(7)

\[q_{i,j} = f \left(T_{i,j} \sum_{n=1}^{N} k H_i (\lambda_n) S (\lambda_n) \beta (\lambda_n) \right) \]

(11)

- Expression of each factor by matrix notation

\[
q_j = \left(q_{1,j} \cdots q_{l,j} \right)^T
\]

\[
\phi = \left(\phi_1 \cdots \phi_l \right)^T
\]

\[
T_j = \text{diag} \left(T_{1,j} \cdots T_{l,j} \right)
\]

\[
H_i = \left(H_i (\lambda_1) \cdots H_i (\lambda_N) \right)^T
\]

\[
H = \left(H_1 \cdots H_l \right)^T
\]

\[
S = \text{diag} \left(S (\lambda_1) \cdots S (\lambda_N) \right)
\]

\[
\beta = \left(\beta (\lambda_1) \cdots \beta (\lambda_N) \right)^T
\]
Estimation

- Estimating HDRI part
 - Inversion of Eq. (8)
 \[
 \hat{\phi}_i = \frac{\sum_{j=1}^{J} f^{-1}(q_{i,j}) \omega(q_{i,j})}{\sum_{j=1}^{J} \omega(q_{i,j})} = \frac{\sum_{j=1}^{J} O_{i,j} \omega(q_{i,j})}{\sum_{j=1}^{J} \omega(q_{i,j})}
 \]

- Application of weighting function
 - Suppression of saturated values
 \[
 \omega(d) = \begin{cases}
 1.0 & 0 \leq |d| \leq \alpha \frac{D}{2} \\
 \frac{1}{2} \left[1 + \cos \left(\pi \frac{d - \alpha \frac{D}{2}}{2(1-\alpha)\frac{D}{2}} \right) \right] & \alpha \frac{D}{2} \leq |d| \leq \frac{D}{2}
 \end{cases}
 \]
Fig. 4. Windowing function $\omega(\cdot)$: Turkey window with length $D+1=256$ and taper ratio $\alpha=0.5$.
– Spectral estimation

- Inversion of Eq. (9)
 - Application of Eq. (9)
 \[\phi = kS'H\beta \] (14)

 » Use of white balance reference card with known spectrum \(\beta_{\text{ref}} \) and camera response \(\Phi_{\text{ref}} \)
 \[S'_{\text{ref}} = \text{diag}\left(\phi_{\text{ref}} \div (kH\beta_{\text{ref}}) \right) \] (15)

- Inserting Eq. (15) to (14)
 \[\phi = k\text{diag}\left(\phi_{\text{ref}} \div (kH\beta_{\text{ref}}) \right)H\beta \] (16)

- Simplification of Eq. (16)
 \[\left(\phi \div \phi_{\text{ref}} \right) \circ \left(H\beta_{\text{ref}} \right) = H\beta \] (17)
- Approximation of reflectance

\[
\hat{\beta} = H_{\text{inv}} \left((\phi \div \phi_{\text{ref}}) \circ (H \beta_{\text{ref}}) \right) \quad (18)
\]

» Using weighted pseudoinverse

\[
H_{\text{inv}} = R_{xx}^{-1} H^T \left(H R_{xx}^{-1} H^T \right) \quad (19)
\]

\[
R_{xx}^{-1} = \begin{pmatrix}
1 & \rho & \rho^2 & \ldots & \rho^{N-1} \\
\rho & 1 & \rho & \ldots & \rho^{N-2} \\
\rho^2 & \rho & 1 & \ldots & \\
& \ldots & \ldots & \rho & \\
\rho^{N-1} & \rho^{N-2} & \ldots & \rho & 1
\end{pmatrix} \quad (20)
\]
Practical considerations

☐ Measuring CTF
 - Requiring linearization of camera values
 • Occurrence of severe errors on final measurement
 • Application of inverse CTF
 \[Q_{i,j} = f^{-1}(q_{i,j}) \] (21)
 - Measurement of CTF by equipment
 • Use of relative radiometric measurement with calibration stand
 \[E \sim \frac{r^2}{r^2 + x^2} L \] (22)

where \(E \) is the irradiance, \(L \) is the radiance, \(r \) is the opening diameter of sphere, and \(x \) is the distance between light source and camera sensor.
Fig. 5. Our camera transfer function (CTF) measurement stand
 Acquisition procedure
 – Acquisition of images with different exposures and channels
 • Use of Macbeth ColorChecker with 24 color patches

Fig. 6. All images taken for an acquisition with seven spectral channels $I=7$ (left to right) and three exposure levels $J=3$ (top to bottom).
Visualizing each histogram of single image from exposure time series

Fig. 7. Histograms of normalized images with different exposure times.
Multispectral data exchange
- Use of .aix file format for multispectral HDR images
 - Producing floating point data
 - Including details in dark and bright regions
 » Storing values from Eq. (18)

\[\left(\phi \div \phi_{\text{ref}} \right) \circ (H\beta_{\text{ref}}) \quad (23) \]

Experiments
- Acquisition of images with 7 exposure times for 7 spectral channels
 - Use of Macbeth ColorChecker SG with 140 color patches
 - Use of halogen lamp
Results

- Visualizing analysis of SNR improvement between LDR and HDR acquisition

Fig. 8. Comparison of the signal to noise ratio of LDR/HDR acquisitions of a ColorChecker with 140 color patches.
Visualizing measurements of color accuracy

- Use of Macbeth EyeOne spectral photometer

Fig. 9. Comparison of spectral error ΔE_{00}.
Acquisition of outdoor scenes

Fig. 10. HDR image of Aachen's city hall.
Fig. 11. Detail crops of Fig. 10 showing the improvements of HDR imaging; left images: LDR, right images: HDR.
Conclusion

- Multispectral high dynamic range imaging method
 - Combination of two methods
 - HDR imaging
 - Multispectral imaging
 - Advantage
 - Improvement of color accuracy
 - Improvement of signal to noise ratio
 - Improvement of applicability for outdoor images