High-Dynamic Range Imaging Techniques Based on Both Color-Separation Algorithms Used in Conventional Graphic Arts and the Human Visual Perception Modeling

Electronic Imaging 2010

Mei-Chun Lo, Tsung-Hsien Hsieh, Ruey-Kuen Perng, and Jiong-Qiao Chen

Presented by Dae-Chul Kim

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Proposed method
 – Deriving illuminant-independent type of HDR imaging modules
 • Reconstruct of every color concerned in high-dynamic-range of original images
 • Tone-mapping module
 – Derived based on a multiscale representation of the human visual system
 – Using equations similar to a photoreceptor adaptation equation
 • Adaptive bilateral type of gamut mapping algorithm
 – Incorporated with or without adaptive Un-sharp Masking (USM)
 » Carry out the optimization of HDR image rendering
Introduction

- **High dynamic range (HDR)**
 - Dynamic range
 - Ratio of the highest to the lowest luminance or signal level
 - Real world dynamic range
 - Approximately fourteen orders of magnitude
 - Performance of digital image capture and display devices
 - Match or even exceed performance of film
 - Accuracy
 - Resolution
 - Sufferance of limited dynamic range
Computational Framework of Model

◆ Tone reproduction techniques
 – Global tone mapping operators
 • Simple
 • Preservation of intensity orders of original scenes
 – Avoiding halo artifacts
 – Previous global tone mapping operators
 • Tumblin and Rushmeier
 – Match perceived brightness of displayed image with brightness of scene
 • Ward
 – Match perceived contrast between displayed image and scene
Fig. 1. The specific computational procedures used to implement each step of the model.
– Tone Mapping Algorithm

• Preservation of details and local contrast
• Consider pixel neighborhood information in mapping processing for each individual pixel

Fig. 2. Computation procedures of the multiscale model of adaptation and spatial vision for realistic tone mapping.
– Device Characterization and Gamut Mapping
 • Novel fast global histogram adjustment
 – Utilization of full dynamic range of display
 – Reproduction of global contrast
 – Insufficient preservation of local contrast and details

Fig. 3. Gamut mapping using a multiple-conversing-points approach.
Fig. 4. Proposed framework of the adaptive gamut mapping algorithm applied...
Applying the model and evaluations

- HDR Tone Mapping Algorithm
 - Increase of contrast and brightness
 - Low luminance value
 - Compression of contrast and brightness
 - High luminance value

\[
D(I) = (D_{\text{max}} - D_{\text{min}}) \times \frac{\log(I + \tau) - \log(I_{\text{min}} + \tau)}{\log(I_{\text{max}} + \tau) - \log(I_{\text{min}} + \tau)} + D_{\text{min}} \quad (1)
\]

where \(I_{\text{min}} \) and \(I_{\text{max}} \) are the minimum and maximum luminance of the scene, \(D_{\text{max}} \) and \(D_{\text{min}} \) are the maximum and minimum display levels of the visualization devices, and \(\tau \) controls the overall brightness of the mapped image.
– Result of different values of τ

Fig. 5. Application of the model using a linear (a), an exponential (b and c) and a logarithmic mapping (d).
Device Characterization and Gamut Mapping

- Estimate of parameter
 - Log-average luminance of scene
 - Mapping specific point in display dynamic range depending on scene brightness
 - Procedure
 - Calculate log-average luminance \(I_{\text{ave}} \) of scene
 \[
 I_{\text{ave}} = \exp \left[\frac{1}{N} \sum_{x,y} \log (\varepsilon + I(x,y)) \right] \tag{2}
 \]

where \(N \) is the total pixel number in the image, \(I(x,y) \) is the luminance value whose minimal can be 0 for pure black point, and a small value \(\varepsilon \) is used to avoid the singularity that occurs with 0 values in these cases when taking logarithm operation.
– Calculate key value of image on scale between 0 and 1

\[k = A \times B^{(2 \log I_{ave} - \log I_{min} - \log I_{max})/(\log I_{max} - \log I_{min})} \]

(3)

where constants A and B are empirically set to 0.4 and 2, and thus k range form 0.2 to 0.8.

– Decide offset \(\tau \)

 » Use of numerical calculation

\[k = \frac{\log(I_{ave} + \tau) - \log(I_{min} + \tau)}{\log(I_{max} + \tau) - \log(I_{min} + \tau)} \]

(4)
- Division of range of D(I)

<table>
<thead>
<tr>
<th>Test Images</th>
<th>Test Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Scales of RGB CMY</td>
<td>(5) Wools</td>
</tr>
<tr>
<td>(2) Ski</td>
<td>(6) Fruits</td>
</tr>
<tr>
<td>(3) Scene of River</td>
<td>(7) Bride Clothes</td>
</tr>
<tr>
<td>(4) Color Patches and Bars</td>
<td>(8) Silvers and Bottles</td>
</tr>
</tbody>
</table>

Fig. 6. Images used in the test of gamut mapping algorithm.
– Histogram adjustment based linear to equalized quantizer (HALEQ)

\[le_n = l_n + \beta (e_n - l_n) \] \hspace{1cm} (5)

where \(0 \leq \beta \leq 1 \) is a controlling parameter.

Table 1. Seven gamut mapping (GM) algorithms tested.

<table>
<thead>
<tr>
<th>Model</th>
<th>GM1</th>
<th>GM 2</th>
<th>GM 3</th>
<th>GM 4</th>
<th>GM 5</th>
<th>GM 6</th>
<th>GM 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM method</td>
<td>Clipping</td>
<td>Linear Compression</td>
<td>S-Shape</td>
<td>Adjusted Clipping</td>
<td>Adjusted Linear Compression</td>
<td>Adjusted Clipping</td>
<td>Adjusted Linear Compression</td>
</tr>
<tr>
<td>USM</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
– Mapping results and mapping curves
 • Existence of very few very bright pixels
 – Correspond to area of lamps

Fig. 7. GMAs performance evaluated using the paired comparison method.
Adaptive local histogram adjustment (ALHA)

- Characteristic of HALEQ
 - Effective utilization of dynamic range of display
- Segment image into small regions
- Applying HALEQ in each local area
 - Full display dynamic range
◆ HALEQ in local regions
 – Logarithmic mapping (Eq.(1))
 – Determination of local regions
 • Division of image into non-overlapping regular rectangular blocks

Fig. 6. Left: divide the image into blocks and then apply HALEQ technique developed in Section 3 to each individual block.
– Output integer display level $d(x, y)$

$$d(x, y) = HALEQ_n[D(x, y)] \quad (x, y) \in n$$ \hspace{1cm} (6)

Fig. 7. The mapping functions and histograms for two different local areas A and B of an example image (The right image of Fig. 9).
Normalized histograms of area A after applying different approaches to D(I)

- Top: histogram from the linear quantization.
- Middle: histogram from the original HALEQ.
- Bottom: histogram from local HALEQ.

Fig. 8. Normalized histograms of area A after different approaches are applied to D(I) output by Eq. (1). Top: the histogram from the linear quantization. Middle: histogram from the original HALEQ. Bottom: histogram from local HALEQ.
– Mapping results from local HALEQ method
 • More details and local contrast in either dark or bright regions
 • Boundary artifacts

Fig. 9. Mapping results from local HALEQ. Memorial radiance map courtesy of Paul Debevec, University of California at Berkeley; Clock building radiance map courtesy of Greg Ward.
– Solution to boundary artifact

- Weighted average of results from tone mapping function

\[
d(x, y) = \sum_{n=1}^{n=K} \text{HALEQ}_n \left[D(x, y) \right] \cdot w_d(n) / \sum_{n=1}^{n=K} w_d(n)
\]
(7)

where distance weighting function \(w_d \) is calculated as

\[
w_d(n) = e^{-\left(d_n / \sigma_d \right)}
\]
(8)

where \(d_n \) is the Euclidean distance between the current pixel position and the centers of each of the blocks, \(\sigma_d \) controls the smoothness of the image.

Fig. 6. Right: distance weighting function is introduced to eliminate the boundary artifacts. For easy illustration, only 9 blocks are used in this figure.
Conclusion and future work

◆ Proposed method
 – Novel histogram adjustment method
 • Global tone mapping operator HALEQ
 – Fast and well reproduce global contrast
 – Lack of local contrast
 • Local tone mapping operator ALHA
 – Adapt global HALEQ to local implementation
 – Applying HALEQ directly into local areas
 – High quality results with very faster computation speed and fewer parameter adjustments

◆ Future work
 – Achieve real-time computation for local tone mapping algorithm