Color Gamut Mapping Based on Image Fusion

International Conference on Computer Science and Software Engineering
pp. 801-805, 2008
Yifeng Wang, Ping Zeng and Xuemei Luo
Presented by Ho-Gun Ha

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Aim of the proposed method

- Reproducing perceptually closest to the corresponding original image
 - Image dependent gamut mapping via image fusion
 - Quantifying the perceptual difference between images
 » Divide and conquer
 - Mapping fusing model
Introduction

◆ Color gamut
 – Reproducible set of colors in devices

◆ Classical gamut mapping algorithm
 – Pixel by pixel mapping
 • Ignoring the spatial color configuration
 – Eliminating the edge
 » Mapping two colors to the same in-gamut color
 – Color distortion
 » Mapping out of gamut colors to different colors
Spatial gamut mapping algorithm

– Frequency domain
 • Compressing lightness using low pass filter in frequency domain
 • Adding the high pass filtered image
 – Detail information
- Two level approach
 - Initial gamut mapping (clipping)
 - Adding difference to initial gamut mapped image
 - Clipping
- Multiscale spatial GMA
 - Decomposition of original image into different spatial frequency band
– Multiresolution GMA
 • Based on retinex theory
– New spatial GMA
 • Replacing Gaussian filter to bilateral filter
– Multilevel GMA
 • Reducing hue shift and halo artifact
Evaluation of gamut mapping

- Color difference in CIELAB color space
 - General evaluation method
 - Acceptable mapped image with small E
 - Suitable for blocks with unity color

$$E = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \| t_0 - t \|$$

where u_0 represent the original image in CIELAB,
M, N are the width and height of the image measured in number of pixels,
u is the final gamut mapped image with the same size,
t_0, t are pixel vectors in u_0, u,
and $\| \| \|$ is the 2-norm.
– Subjective evaluation
 • Matching appearance of the image rather than individual color in image
 – Judging the similarity between images
 – Image containing complex contents, rich texture and details

– Perceptual difference
 • Defining two difference to guide the gamut mapping
 – Perceptual color difference
 – Perceptual gradient difference
 – CSF of human visual system
• Perceptual color difference

\[D^c = f \ast (u^c - u_0^c) \]

\[E_D = \sum_{c \in \{L, A, B\}} \| D^c \| \]

where \(c \in \{L, A, B\} \), \(L, A, B \) are the three component of CIELAB space, \(\ast \) denotes convolution, and \(f \) is the CSF function.

• Perceptual gradient difference

\[G^c = \nabla D^c = \nabla [f \ast (u^c - u_0^c)] \]

\[E_G = \sum_{c \in \{L, A, B\}} \| G^c \| \]

where \(c \in \{L, A, B\} \), \(\nabla \) is the gradient operator.
– Perceptual measure for gamut mapping
 • Similarity between the original and gamut mapped image

\[E_{HVS} = \alpha E_D + (1-\alpha)E_G \]

where \(\alpha \in [0,1] \) is the gradient operator.
Proposed gamut mapping algorithm

- Proposed method
 - Optimization of perceptual measure
 - Assuming that the target device is convex
 - Difficult to get a unique optimum solution
 \[
 u_{opt}^c = \arg \min_{u^c} \sum_{c \in \{L,A,B\}} \{\alpha E_D + (1 - \alpha) E_G\}
 \]
 - Divide and conquer strategy
 - Initial gamut mapping
 - Comparing mapped image with original image
 - Identifying the max gradient distortion
 - Gradient keep algorithm
Divide and conquer

– Lemma 1

• Minimum E clipping algorithm yields minimum E_D
• Definition of minimum E clipping algorithm

$$\hat{x} = \begin{cases} \arg \min_x \|x - x'\| & x \in D \\ x & x \in J \end{cases}$$

This algorithm gives the minimum E_D
Lemma 2

- Image gamut based linear scale method yields minimum E_γ
 - Image gamut based linear scale method

$$\hat{x} = x + \lambda(x_0 - x) \in G$$

where $\lambda \in (0, 1)$ denote scale ratio, x_0 is the anchor point located at L axis.

$$\hat{x} - x = \lambda(x_0 - x)$$

$$\hat{x}_{i,j} - x_{i,j} = \lambda(x_0 - x_{i,j})$$

$$\hat{x}_{i+1,j} - x_{i+1,j} = \lambda(x_0 - x_{i+1,j})$$
• One order horizontal difference

\[
(\hat{x}_{i+1,j} - x_{i+1,j}) - (x_{i,j} - x_{i,j}) = \lambda (x_{i,j} - x_{i+1,j})
\]

• Two norm in both side

\[
\left\| (\hat{x}_{i+1,j} - x_{i+1,j}) - (x_{i,j} - x_{i,j}) \right\| = \left\| \lambda (x_{i,j} - x_{i+1,j}) \right\|
\]

– Minimum one order difference quantity

» Constant of \(\left\| (x_{i,j} - x_{i+1,j}) \right\| \)

\[
\lambda = \lambda_{\text{min}}
\]

This algorithm gives the minimum \(E_G \)
◆ Image fusion

– Merging the advantage of \(u_1 \) and \(u_2 \)

 • Initial gamut mapped image (\(u_1 \))

 – Maintaining most color fidelity

 – Color cloud

 • Image gamut based linear scale method (\(u_2 \))

 – Losing much color fidelity when applying \(u_1 \)

– Sharp edge image of binary image

\[
I_{\text{sharp}}(i, j) = \begin{cases}
0, & I(i, j) \leq T \\
1, & I(i, j) > T
\end{cases}
\]
– Transforming perceptual difference to binary

• Sharp edge image (I_{sharp})
• Segmenting image (u_o) to yield the region with large color distortion (u_{seg})
• Fusing final image (u_f)
 – Achieving via a fusion model

\[
u_f(i, j) = \begin{cases}
 u_1(i, j), & (i, j) \notin u_{\text{seg}} \\
 u_2(i, j), & (i, j) \in u_{\text{seg}}
\end{cases}, i = 1, \ldots, M, j = 1, \ldots, N
\]
- Flowchart of the proposed algorithm

- Minimum ΔE clipping
- Calculate G_1
- Calculate I_{sharp}
- Image segmentation
- Image fusion
- Image gamut based linear scale
Experimental results

- Mapping image to printer
 - 512x512 business picture

(a) Original image
(b) Image gamut
(c) Printer gamut

Fig. 2. Image and device gamut
Fig. 3. Image and device gamut
– Results of gamut mapping
 • Color difference
 • Perceptual difference

Table 1. Evaluation index of the three GMAs

<table>
<thead>
<tr>
<th>Name of GMAs</th>
<th>E</th>
<th>E_{HVS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum ΔE clipping</td>
<td>2.7805</td>
<td>5.2848</td>
</tr>
<tr>
<td>image gamut based linear scale</td>
<td>10.999</td>
<td>7.5603</td>
</tr>
<tr>
<td>Proposed</td>
<td>4.015</td>
<td>4.8369</td>
</tr>
</tbody>
</table>
Summary

◆ Proposed method
 – Using human visual based image evaluation model
 • Divide and conquer scheme and mapping fusion model
 – Segment into two kinds of regions
 • Little edge distortion
 – Clipping mapping
 • Other region
 – Linear scale mapping