Color correction for tone mapping

EUROGRAPHICS 2009,
Vol. 28, No. 2, 2009
R. Mantiuk, R. Mantiuk, A. Tomaszewska, and W. Heidrich

Presented by Jung-Yul Choi

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Tone mapping algorithms
 – Offer sophisticated methods for mapping HDR to LDR
 – Changes in color appearance

◆ Measurement of change after tone mapping
 – Indication of relation between contrast compression and color saturation correction

◆ Proposal of color correction formulas
 – Available existing tone mapping algorithms
Introduction

◆ Tone mapping algorithms
 – Often cause changes in color appearance
 – Luminance compression
 • Darker tones to appear brighter
 • Distort contrast relationships

Fig. 1. An original image compared with three images after contrast compression.
Object of this work

- Quantify and model correction in color saturation
- Distrust predictions of existing appearance models
 - Instead conduct subjective appearance matching
 - Measure necessary color correction
- Find new chrominance values
 - Tone mapped image closely matches appearance of image with no tone modification
Related work

◆ Color reproduction
 – Well studied in context of gamut mapping
 – Gamut mapping
 • Modify both luminance and chrominance to preserve color appearance
 • Much smaller contrast compression than tone mapping
 • Operate on display-referred images
 – Proposed method
 • Only modify chrominance
 – Tone mapping modify luminance
 • Operate on scene-referred images
Color appearance studies

- Apparent colorfulness of uniform color patches
 - Vary with luminance, image size, and color of surround
 - Hunt effect
- Apparent lightness of color patches
 - Depend on chromacity
 - Helmholtz & Kohlrausch effect
- Apparent hue
 - Depend on luminance
 - Abney effect
- Perceived contrast of images
 - Decrease with reduced chroma
 - Sigmoidal relation
Color reproduction in tone mapping

- Focus on preserving color appearance of real-world scene

- Pattanaik et al.
 - Introduce complex model of human color vision
 - Introduce opponent color processing
 - Gain control for both luminance and contrast signals

- Later work
 - Focus on aspects of temporal adaptation
 - Use photoreceptor model instead of luminance gain control
 - Employ simplified appearance model based on Hunt’s model
Color appearance model

- iCAM color appearance model
 - Achieve contrast compression
 - Applying spatially varying power function to three color channels in LMS color space
- iCAM06 color appearance model
 - Replace power function with photoreceptor response model
 - Consider separately scotopic and photopic signals
 - Account for perceived contrast change with adapting luminance level and with surround luminance
 - Compensate for increased colorfulness with luminance
– Akyuz and Reinhard
 • Propose color processing framework
 – Adapt to any tone mapping that preserves ratios between color channels
 • Use forward and then backward CIECAM02 model
– Mentioned tone mapping operators
 • Account for color differences
 – Result of different luminance and chromatic adaptation between real-world scene and display viewing conditions
 • No considered change in color appearance
Color correction in tone mapping

◆ Common approach to color treatment
 – Preserving color ratios

\[C_{out} = \frac{C_{in}}{L_{in}} \cdot L_{out} \]

where \(C \) is one of RGB color channels,
\(L \) is pixel luminance, and
\(in/out \) is pixels before and after tone mapping.

• Stronger contrast compression in tone mapping
 – Over-saturated result image
◆ Ad-hoc formula

\[C_{out} = \left(\frac{C_{in}}{L_{in}} \right)^s L_{out} \] \hspace{1cm} (2)

where \(s \) is color saturation control factor.

– Drawback of equation

• Change resulting luminance for \(S \neq 1 \) and for colors different from gray

\[k_R R_{out} + k_G G_{out} + k_B B_{out} \neq L_{out} \]

where \(k_{R,G,B} \) are linear factors to compute luminance for given color space.
Introduction of another color correction

\[C_{out} = \left(1 - \frac{C_{in}}{L_{in}} \right)^2 \frac{L_{out}}{s + 1} \]

- Difference between equation 2 and 3
 - Change in \(S \) from Equation 2
 - Modification both chroma and lightness of colors
 - Change in \(S \) from Equation 3
 - Prevent lightness, but lead to stronger hue shift

Fig. 2. CIECAM02 prediction of hue, chroma, and lightness for the non-linear (a) and luminance preserving (b) color correction formulas.
Another approach to color treatment

– Apply same tone mapping curve to all color channels
 • Form of tone curve
 \[L_{out} = \left(L_{in} b \right)^c \]
 where \(b \) is brightness adjustment that normalizes for maximum display brightness.
 • Another arbitrary tone-curve
 – Apply color correction factor \(s \) of Equation 2
 » Not equivalent to \(s = c \)
 » Results are very close
 • In case of local tone mapping operators
 – All channels usually cannot be modified simultaneously
 – Rely on color transfer formulas, such as Eq. 2 or 3
Equations 2 and 3

- Convenient way of correcting colors in RGB
- Manual adjustment of parameter s

Object

- Estimation of color correction parameter s given luminance-specific tone-curve
Experiment 1: color matching for tone mapping

- Practice of subjective study
 - How much color correction is required to compensate for contrast compression?

- Participants of experiment
 - Split into two parts to test
 - Test group for non-linear Equation 2
 - Test group for luminance preserving Equation 3
◆ Stimuli

– 8 natural images in experiment

Fig. 3. HDR and LDR images used in the experiments.
- Image processing
 - Use Eq. 4 for contrast compression
 - Contrast factor c varied from 0.1 to 1.6
 - Use Eq. 2 and 3 for Color correction
 - Color saturation factor s were adjusted by participant
- Reduce luminance of input image
 - Use 33% of display peak luminance
 - Avoid out-of-gamut

Fig. 4. Tone mapping and color correction used in the experiments.
◆ Experimental procedure
 – Change color correction factor s by participants
 – Matching colorfulness
 • Average of both left and right image

![Fig. 6. Screenshot from the experiment.](image-url)
● Results

 – Averaged results for both color correction formulas
 • Moderate contrast correction for small contrast

 – Relation between c and s
 • Approximate with power function $s(c) = c^{k_3}$
 • Approximate with $s(c) = \frac{(1 + k_1) c^{k_2}}{1 + k_1 c^{k_2}}$ (5)

Fig. 5. Result of matching colors between image with altered contrast and an original image.
Color appearance models and color correction

- Color appearance models
 - Predict non-linearity in visual system
 - Provide set of perceptual attribute predictors
 - Colorfulness, chroma, and saturation

- Object of this experiment
 - Find which perceptual attribute should be preserved after contrast compression
 - Six basic colors of different hue, saturation, and lightness
 - Compress contrast $c \in [0, 2]$ with respect to reference white
 - Color correction factor s determined by Eq. 5
 - Result colors
 - Transform to space of perceptual attribute predictors
– Result colors of CIECAM02 space
 • CIECAM02 saturation
 – Most consistent across contrast variation
 • Relation between the saturation and contrast compression
 – Non-linear relation

Fig. 7. CIECAM02 prediction (hue, saturation, and lightness) for color change.
Limitations of color correction in RGB space
- Either preserve lightness but distort hue, or preserve hue but distort lightness

Color correction in space of perceptual attributes
- CIELAB or CIELUV color space
- Simpler color correction
- Resulting images
 - Better match to originals
◆ Framework for color correction in CIELAB

– Luminance of original image
 • Tone mapping by Eq. (4)

– Chroma of original image
 • Correct by factor s_{LAB}

– Combine lightness and corrected chroma

Fig. 8. Colors correction in the CIELAB color space.
◆ Result of experiment
 – Small contrast modification (0.6 < c < 1.6)
 • Color correction
 – Almost unnecessary (s_{LAB} \approx 1)

Fig. 9. Result of matching image colors using color correction in CIELAB color space.
Illustration of s_{LAB} color correction in CIECAM02

- Color correction in CIELAB
 - Better preserve hue and lightness

Fig. 10. CIECAM02 prediction for color correction in CIELAB space.
Are color appearance models suitable for tone mapping?

◆ CIELAB chroma predictor
 – Better preserve color appearance after contrast compression
 • Seem to be alternative to color correction in RGB color space
 – Limitation for HDR scenes
 • Estimation problem of reference white color
Different selection of reference white

- Lead to completely different colors
- Automatic estimation of reference white
 - Difficult problem
 - Some methods exist
 - Lead to unreliable estimation

Fig. 11. High dynamic range image before and after tone mapping while preserving CIELAB chroma.
Application in tone mapping

◆ This subjective study
 – Demonstrate relation between contrast compression and color correction
 – Applicable to global and local tone mapping

Fig. 12. Results of four color correction methods for contrast compression (top) and enhancement (bottom).
Bilateral tone mapping
- Uniformly reduce contrast of base layer while detail preserving
- Produce good result, but over-saturated colors
- Using proposed method
 - Fix over-saturated colors

Fig. 13. The result of the “bilateral” tone mapping with strong contrast compression, original algorithm compared to the algorithm with color correction.
Proposed color correction formulas

- Apply to simplified operator with contrast factor c
- Apply to any tone mapping function
 - Contrast factor
 - Approximate by slope of tone curve on log-log plot in logarithmic space

$$\hat{L}_{out} := tmo\left(L_{in} \right)$$
$$c\left(L_{in} \right) = \frac{d}{d\hat{L}} tmo\left(\hat{L}_{in} \right)$$

where $\hat{L} = \log_{10}(L)$
Display adaptive tone mapping
- Employ Eq. (2) to compensate for color difference
 - Manually adjust color correction factor \(s \)
- Using proposed method
 - Automatically readjust \(s \)

\[
C_{out} = \left(\frac{C_{in}}{L_{in}} \right)^{s} L_{out}
\]

Fig. 14. The result of the “display adaptive” tone mapping.
Proposed method

- Consideration of only global tone mapping
 - Affect only low frequencies

- Pilot study
 - Investigate effect of local operation, unsharp masking, and colorfulness images
 - Main component of local tone mapping operators
 - Sharpening
 - Proposed color correction
 » Valid method for local tone mapping operators

Fig. 15. Enhancement and compression of details has little effect on colorfulness as compared to global contrast modification.
Conclusions and future work

◆ Tone mapping operator
 – Distort image due to tone and color reproduction

◆ Proposal method
 – Predict desirable color correction
 – Simple and computationally inexpensive formulas
 – Applicable for global and local tone mapping
 – Exist problem of reference white estimation

◆ Future work
 – Isolate set of factors that influence colorfulness after local tone mapping operations