New Method for Specifying Color-Rendering Properties of Light Sources Based on Feeling of Contrast

COLOR research and application
Vol. 32, No. 5, Oct. 2007
Kenjiro Hashimoto, Tadashi Yano, Masanori Shimizu, Yoshinobu Nayatani
Presented by Woo Heon Jang

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Flow chart

Feeling on contrast

FCI method

Comparison between FCI and R_a

Application of FCI
Proposed method

- Feeling of contrast
 - Most important characteristic on color-rendering
 - R_a method
 - Inadequate estimation
 - FCI method
 - Equal feeling of contrast on various light source
 - Using FCI together with R_a
 - Clarified color-rendering on light source
Visual clarity

- Affected by color-rendering of light source
- Using R_a method
 - Inadequate estimation
- Closely related to feeling of contrast
 - Between object color under illumination
- Estimation of different color-rendering
 - Using four-color combination
 - Red, Yellow, Green, Blue
◆ New index FCI

- Simple transformation of gamut area
 - CIELAB space by four-color combination
- Same prediction as original on feeling of contrast
- Simple of tedious computational procedure
- White LED light source
 - Application at various light
 - Composed red, green, blue LED chips
 - High visual clarity
 - Inadequate R_a method
 - Evaluated quantitatively by FCI
Summary of authors previous studies on feeling of contrast

- Summarized procedure and result
 - Based on visual clarity of object color under illumination
 - Closely related feeling of contrast for same observing condition
 - Between visual clarity and feeling of contrast
 - Using two color and four color combination under illumination
 - Effectively assessed color-rendering
 - Using four color combination
 - Highly saturated colors
 - Effect of visual clarity
 - Estimated by assessing feeling of contrast
 - Using four-color combination
– Illuminance for equal feeling of contrast
 • Under any test illuminant
 • Using gamut area
 – Component color of four-color combination
 – Summing area of two triangles
 » Consisting of red, yellow, green
 » Consisting of red, blue, green
 • Computing procedure
 – gamut area
 » Computed by area sum of two triangles
 » Reference illuminant
 » D65, 1000lx
Fig.1. The arrangement of each component color of the selected four-color combination and their Munsell notations.
– Using test illuminant instead of reference illuminant
 » Changing test illuminant
 » Corresponding gamut area by same computational procedure
– Based on computation
 » Interpolation for equality of gamut area
 » Between reference and test illuminant
– Predicted test illuminant for equal feeling of contrast
 » Test illuminant for equal gamut area
 » Equal visual clarity on same test illuminant
– Obtained illuminance ratio
 » Degree of feeling of contrast of test illuminant to reference
 » Complicated computational procedure
Present improved method

- Simplified computation for index of feeling of contrast
 - CIELAB instead of nonlinear color-appearance model
 - Gamut area under same illuminance
 - Irrespective of test and reference illuminant
 - Exception of complicated interpolation
Proposal of a simplified method for deriving a new index FCI

◆ Concept of observed index on feeling of contrast
 – Using two lamp with different color-rendering property
 • Constant Reference illuminant and reference illuminance level
 • Adjustable test illuminant and test illuminance level
 • Determined test illuminance
 – Same feeling of contrast as reference illumination
 • Illuminance ratio
 – Degree of feeling of contrast for test lamp
 – Illuminance ratio higher than unity
 » Degree of feeling of contrast for reference illuminant higher than
 test lamp
 – Illuminance ratio smaller than unity
 » Degree of feeling of contrast for reference illuminant smaller than
 test lamp
– FCI of test lamp

\[
FCI(\text{observed}) = A_c \times 100 = \left(\frac{E_r}{E_i} \right) \times 100
\]

(1)

Where \(E_r \) is reference illuminance value, and \(E_i \) is test illuminance value for equal feeling of contrast of the test to reference.

• Given test illuminance value by observation

◆ Original prediction method of FCI

– Predicted test illuminance

\[
FCI(\text{predicted}) = \left[\frac{E_r}{E_i(\text{predicted})} \right] \times 100
\]

(2)

• Using predicted test illuminance for equal gamut area
• Complicated computation
• Practical inability
Simplified method for deriving FCI

- Simplified method for predicting FCI value

\[
FCI(\text{new}) = \left[\frac{G(T, E_t = 1000\text{lx})}{G(D65, E_r = 1000\text{lx})} \right]^p \times 100
\]

Where \(G(T, E_t = 1000\text{lx}) \) corresponds to the gamut-area value on the four-color combination under the test illuminant \(T \) at illuminance \(1000\text{lx} \),

\(G(D65, E_r = 1000\text{lx}) \) to that for the same four-color combination under the reference illuminant \(D65 \) at reference illuminance \(1000\text{lx} \), and

\(p \) is an unknown contrast to be determined. It must be noted that, in the computation, the test illuminance is always kept at the same as the reference illuminance \(1000\text{lx} \).

- Determined index FCI

\[
FCI = \left[\frac{G(T, E_t = 1000\text{lx})}{G(D65, E_r = 1000\text{lx})} \right]^{1.5} \times 100
\]
– Calculated by computational procedure

Step 1: Selection of four-color combination

Table 1. Spectral reflectance data of each component color (red, yellow, green, blue) of the four-color combination in Fig.1.

<table>
<thead>
<tr>
<th>Wavenumber (nm)</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
<th>Blue</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>0.058</td>
<td>0.078</td>
<td>0.075</td>
<td>0.066</td>
<td>585</td>
<td>0.089</td>
<td>0.749</td>
<td>0.121</td>
</tr>
<tr>
<td>385</td>
<td>0.059</td>
<td>0.084</td>
<td>0.081</td>
<td>0.070</td>
<td>585</td>
<td>0.116</td>
<td>0.744</td>
<td>0.108</td>
</tr>
<tr>
<td>390</td>
<td>0.061</td>
<td>0.082</td>
<td>0.088</td>
<td>0.076</td>
<td>595</td>
<td>0.150</td>
<td>0.743</td>
<td>0.096</td>
</tr>
<tr>
<td>395</td>
<td>0.061</td>
<td>0.089</td>
<td>0.096</td>
<td>0.085</td>
<td>600</td>
<td>0.198</td>
<td>0.738</td>
<td>0.087</td>
</tr>
<tr>
<td>400</td>
<td>0.061</td>
<td>0.103</td>
<td>0.101</td>
<td>0.092</td>
<td>605</td>
<td>0.263</td>
<td>0.734</td>
<td>0.080</td>
</tr>
<tr>
<td>405</td>
<td>0.061</td>
<td>0.106</td>
<td>0.105</td>
<td>0.101</td>
<td>610</td>
<td>0.338</td>
<td>0.729</td>
<td>0.075</td>
</tr>
<tr>
<td>410</td>
<td>0.060</td>
<td>0.107</td>
<td>0.108</td>
<td>0.109</td>
<td>615</td>
<td>0.412</td>
<td>0.726</td>
<td>0.072</td>
</tr>
<tr>
<td>415</td>
<td>0.060</td>
<td>0.107</td>
<td>0.110</td>
<td>0.110</td>
<td>620</td>
<td>0.489</td>
<td>0.723</td>
<td>0.071</td>
</tr>
<tr>
<td>420</td>
<td>0.059</td>
<td>0.107</td>
<td>0.112</td>
<td>0.111</td>
<td>625</td>
<td>0.565</td>
<td>0.721</td>
<td>0.070</td>
</tr>
<tr>
<td>425</td>
<td>0.059</td>
<td>0.108</td>
<td>0.115</td>
<td>0.120</td>
<td>630</td>
<td>0.603</td>
<td>0.720</td>
<td>0.069</td>
</tr>
<tr>
<td>430</td>
<td>0.058</td>
<td>0.109</td>
<td>0.116</td>
<td>0.123</td>
<td>635</td>
<td>0.641</td>
<td>0.719</td>
<td>0.069</td>
</tr>
<tr>
<td>435</td>
<td>0.058</td>
<td>0.110</td>
<td>0.122</td>
<td>0.135</td>
<td>640</td>
<td>0.695</td>
<td>0.718</td>
<td>0.069</td>
</tr>
<tr>
<td>440</td>
<td>0.058</td>
<td>0.111</td>
<td>0.125</td>
<td>0.154</td>
<td>645</td>
<td>0.692</td>
<td>0.718</td>
<td>0.069</td>
</tr>
<tr>
<td>445</td>
<td>0.057</td>
<td>0.113</td>
<td>0.130</td>
<td>0.172</td>
<td>650</td>
<td>0.694</td>
<td>0.717</td>
<td>0.069</td>
</tr>
<tr>
<td>450</td>
<td>0.056</td>
<td>0.115</td>
<td>0.135</td>
<td>0.184</td>
<td>655</td>
<td>0.703</td>
<td>0.718</td>
<td>0.069</td>
</tr>
<tr>
<td>455</td>
<td>0.055</td>
<td>0.116</td>
<td>0.141</td>
<td>0.192</td>
<td>660</td>
<td>0.708</td>
<td>0.719</td>
<td>0.070</td>
</tr>
<tr>
<td>460</td>
<td>0.055</td>
<td>0.118</td>
<td>0.149</td>
<td>0.200</td>
<td>665</td>
<td>0.713</td>
<td>0.721</td>
<td>0.072</td>
</tr>
<tr>
<td>465</td>
<td>0.054</td>
<td>0.120</td>
<td>0.158</td>
<td>0.208</td>
<td>670</td>
<td>0.716</td>
<td>0.723</td>
<td>0.073</td>
</tr>
<tr>
<td>470</td>
<td>0.054</td>
<td>0.123</td>
<td>0.166</td>
<td>0.211</td>
<td>675</td>
<td>0.719</td>
<td>0.725</td>
<td>0.074</td>
</tr>
<tr>
<td>475</td>
<td>0.052</td>
<td>0.126</td>
<td>0.175</td>
<td>0.209</td>
<td>680</td>
<td>0.720</td>
<td>0.727</td>
<td>0.076</td>
</tr>
<tr>
<td>480</td>
<td>0.051</td>
<td>0.130</td>
<td>0.184</td>
<td>0.202</td>
<td>685</td>
<td>0.722</td>
<td>0.729</td>
<td>0.077</td>
</tr>
<tr>
<td>485</td>
<td>0.050</td>
<td>0.137</td>
<td>0.190</td>
<td>0.200</td>
<td>690</td>
<td>0.724</td>
<td>0.730</td>
<td>0.079</td>
</tr>
<tr>
<td>490</td>
<td>0.050</td>
<td>0.148</td>
<td>0.209</td>
<td>0.177</td>
<td>695</td>
<td>0.726</td>
<td>0.732</td>
<td>0.080</td>
</tr>
<tr>
<td>495</td>
<td>0.049</td>
<td>0.164</td>
<td>0.227</td>
<td>0.163</td>
<td>700</td>
<td>0.731</td>
<td>0.734</td>
<td>0.081</td>
</tr>
<tr>
<td>500</td>
<td>0.049</td>
<td>0.194</td>
<td>0.236</td>
<td>0.147</td>
<td>705</td>
<td>0.733</td>
<td>0.734</td>
<td>0.081</td>
</tr>
<tr>
<td>505</td>
<td>0.047</td>
<td>0.240</td>
<td>0.301</td>
<td>0.082</td>
<td>710</td>
<td>0.738</td>
<td>0.735</td>
<td>0.081</td>
</tr>
<tr>
<td>510</td>
<td>0.049</td>
<td>0.298</td>
<td>0.325</td>
<td>0.118</td>
<td>715</td>
<td>0.742</td>
<td>0.735</td>
<td>0.080</td>
</tr>
<tr>
<td>515</td>
<td>0.050</td>
<td>0.376</td>
<td>0.352</td>
<td>0.105</td>
<td>720</td>
<td>0.746</td>
<td>0.734</td>
<td>0.080</td>
</tr>
<tr>
<td>520</td>
<td>0.050</td>
<td>0.451</td>
<td>0.363</td>
<td>0.064</td>
<td>725</td>
<td>0.751</td>
<td>0.734</td>
<td>0.080</td>
</tr>
<tr>
<td>525</td>
<td>0.051</td>
<td>0.529</td>
<td>0.361</td>
<td>0.064</td>
<td>730</td>
<td>0.754</td>
<td>0.736</td>
<td>0.081</td>
</tr>
<tr>
<td>530</td>
<td>0.051</td>
<td>0.596</td>
<td>0.348</td>
<td>0.077</td>
<td>735</td>
<td>0.756</td>
<td>0.736</td>
<td>0.083</td>
</tr>
<tr>
<td>535</td>
<td>0.052</td>
<td>0.645</td>
<td>0.331</td>
<td>0.071</td>
<td>740</td>
<td>0.758</td>
<td>0.740</td>
<td>0.086</td>
</tr>
<tr>
<td>540</td>
<td>0.053</td>
<td>0.684</td>
<td>0.308</td>
<td>0.067</td>
<td>745</td>
<td>0.760</td>
<td>0.742</td>
<td>0.089</td>
</tr>
<tr>
<td>545</td>
<td>0.054</td>
<td>0.710</td>
<td>0.294</td>
<td>0.063</td>
<td>750</td>
<td>0.763</td>
<td>0.744</td>
<td>0.092</td>
</tr>
<tr>
<td>550</td>
<td>0.055</td>
<td>0.726</td>
<td>0.260</td>
<td>0.061</td>
<td>755</td>
<td>0.765</td>
<td>0.747</td>
<td>0.098</td>
</tr>
<tr>
<td>555</td>
<td>0.057</td>
<td>0.737</td>
<td>0.236</td>
<td>0.058</td>
<td>760</td>
<td>0.766</td>
<td>0.747</td>
<td>0.102</td>
</tr>
<tr>
<td>560</td>
<td>0.060</td>
<td>0.743</td>
<td>0.213</td>
<td>0.057</td>
<td>765</td>
<td>0.769</td>
<td>0.749</td>
<td>0.105</td>
</tr>
<tr>
<td>565</td>
<td>0.062</td>
<td>0.747</td>
<td>0.191</td>
<td>0.055</td>
<td>770</td>
<td>0.770</td>
<td>0.750</td>
<td>0.108</td>
</tr>
<tr>
<td>570</td>
<td>0.068</td>
<td>0.750</td>
<td>0.173</td>
<td>0.054</td>
<td>775</td>
<td>0.773</td>
<td>0.750</td>
<td>0.110</td>
</tr>
<tr>
<td>575</td>
<td>0.068</td>
<td>0.750</td>
<td>0.154</td>
<td>0.063</td>
<td>780</td>
<td>0.744</td>
<td>0.749</td>
<td>0.112</td>
</tr>
<tr>
<td>580</td>
<td>0.075</td>
<td>0.740</td>
<td>0.137</td>
<td>0.063</td>
<td>785</td>
<td>0.749</td>
<td>0.750</td>
<td>0.113</td>
</tr>
</tbody>
</table>
• Step 2 : Calculation of tristimulus values of each component color of the four-color combination under test light source
 – Calculation of tristimulus in test illuminant
 » Spectral distribution data of test illuminant
 » Spectral reflectance data of each component color

• Step 3 : Determination of the tristimulus values of the corresponding colors under reflectance illuminant D65
 – Using CIE chromatic adaptation transform
 – 1000lx of value of test illminance
 – 20 of luminance factor and reflectance
• Step 4 : calculation of gamut area \(G(T, E_t =1000lx) \) for test illuminant (T)
 – Tristimulus value of corresponding color
 » Converted component color into CIELAB
 – Gamut area \(G \)
 » Computed by area sum of two triangles

• Step 5 : calculation of gamut area \(G(D65, E_r =1000lx) \) for reference illuminant D65
 – Tristimulus value of each component color
 » Calculated spectral distribution data and spectral reflectance data
 » Converting tristimulus into CIELAB
 – Gamut area \(G \)
 » Computed by area sum of two triangles
Fig.2. The gamut area in the three-dimensional space, consisting of CIELAB coordinates \((L^*, a^*, b^*)\) of each component color \((R, Y, G, B)\) of the four-color combination under illumination.
• Step 6 : calculation of FCI
 – Based on $G(T, E_t = 1000\text{lx})$ and $G(D65, E_r = 1000\text{lx})$

Fig. 3. Relationship between the value of FCI by Eq.(4) and that of FCI (observed) by Eq.(1) for 20 lamps.
Comparison between FCI and general color-rendering index R_a

Table 2: correlated color temperatures (K), general color rendering indices (R_a), and FCI by Eq. (4) for 20 kinds of lamps.

<table>
<thead>
<tr>
<th>No.</th>
<th>Lamp</th>
<th>K</th>
<th>R_a</th>
<th>FCI Eq. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incandescent Lamp</td>
<td>2750</td>
<td>100</td>
<td>123</td>
</tr>
<tr>
<td>2</td>
<td>FL with normal type</td>
<td>3500</td>
<td>56</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>FL with normal type</td>
<td>3500</td>
<td>57</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>FL with normal type</td>
<td>3700</td>
<td>61</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>FL with normal type</td>
<td>4950</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>FL with normal type</td>
<td>5050</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>FL with normal type</td>
<td>5950</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>FL with normal type</td>
<td>6550</td>
<td>76</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>FL with deluxe type</td>
<td>3300</td>
<td>92</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>FL with deluxe type</td>
<td>4000</td>
<td>85</td>
<td>104</td>
</tr>
<tr>
<td>11</td>
<td>FL with deluxe type</td>
<td>4250</td>
<td>89</td>
<td>114</td>
</tr>
<tr>
<td>12</td>
<td>FL with deluxe type</td>
<td>4750</td>
<td>89</td>
<td>109</td>
</tr>
<tr>
<td>13</td>
<td>FL with deluxe type</td>
<td>5200</td>
<td>95</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>FL with deluxe type</td>
<td>6600</td>
<td>93</td>
<td>99</td>
</tr>
<tr>
<td>15</td>
<td>FL with triband type</td>
<td>5000</td>
<td>84</td>
<td>104</td>
</tr>
<tr>
<td>16</td>
<td>High Pressure Sodium lamp 1</td>
<td>2100</td>
<td>50</td>
<td>76</td>
</tr>
<tr>
<td>17</td>
<td>High Pressure Sodium lamp 2</td>
<td>2150</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>High Pressure Sodium lamp 3</td>
<td>2550</td>
<td>86</td>
<td>138</td>
</tr>
<tr>
<td>19</td>
<td>High Pressure Sodium lamp 4</td>
<td>2850</td>
<td>68</td>
<td>161</td>
</tr>
<tr>
<td>20</td>
<td>High Pressure Sodium lamp 4</td>
<td>3450</td>
<td>52</td>
<td>172</td>
</tr>
</tbody>
</table>
Fig. 4. Relationship between R_a and that of FCI by Eq. (4) for each of 20 lamps.
◆ Difference in use between FCI and R_a

- Index R_a
 - Changing from reference to test illuminant
 - No information about direction of color shift on any color
 » Object color of test lamp more saturated or not

- Index FCI
 - Giving effect of feeling of contrast
 - Becoming high FCI value of test lamp
 » Increasing perceived chroma of object color under illumination
– Artificial light source
 • Classified based on rank of R_a value
 – Acceptable above 60 and preferable above 80
 • Violation with above rank rule on R_a
 – Requiring displayed object color more colorful and attractive
 – Increasing illumination
Related topics

◆ Application of FCI to white LED light source
 – White LED light source
 • Composed of red, green, blue LED chips
 • High visual clarity or high FCI value
 • Measuring spectral power distribution (SPD) of various LED
 – Obtained SPDs data
 – Same chromaticity with correlated color temperature (5000K)
 • Impossibility of appropriate estimation
 – Using R_a value
 – Using new index FCI together
Fig. 5. Two kinds of spectral power distributions of three-chip white LED light sources with the same correlated color temperature (5000K).
Use of CIECAM02 for FCI

- CIECAM02
 - Similarly computed FCI
 - Color appearance space \((J, a_c, b_c)\) in CIECAM02
 - Using instead of CIELAB color space
 - CIE chromatic adaptation transform

\[
FCl(CAM02) = \left[\frac{G_{Jab}(T)}{G_{Jab}(D65)} \right]^{1.5} \times 100
\]

Where \(G_{Jab}(T)\) corresponds to the gamut-area value on the four-color combination under the test (T), and \(G_{Jab}(D65)\) to that for the same four-color combination under the reference illuminant (D65) in color space \((J, a_c, b_c)\)
Fig. 6. Relationship between FCI by Eq. (4) and FCI (CAM02) by Eq. 5 for 22 lamps.
◆ Relationships between feeling of contrast and each of other corresponding assessing methods
 – Several terms
 • Corresponding to visual clarity of test illuminant
 • Brightness sensation, feeling of contrast, preference, feeling of pleasantness
– Definition about several terms

• Visual clarity of test lamp
 – Meaning between various object color under illuminant
 – Higher feeling of clear distinction between object colors

• Corresponding feeling of contrast object color
 – High feeling of clear distinction between object color
 » High feeling of contrast

• Increasing brightness sensation
 – Raising saturation of any object color
 – High visual clarity of various object color
 » Increasing saturation of object color
• High feeling of pleasantness of various object color
 – Increasing saturation
 » Especially red and green hue

– Assessing method of color-rendering method
 • Made between CIE R_a method and FCI
 • Nice observation
Summary article

- Proposed New index FCI
 - Estimating effect of feeling of contrast under any light source
 - Illuminance ratio
 - Equal feeling of contrast on various light source
- Derived FCI
 - Using simple transformation of gamut area
 - Constituted by four combination in CIELAB color space
– Concept of FCI and R_a
 • Completely different from each other
 • Using FCI with R_a
 – clarified color rendering capability of light source

– White LED light source
 • High FCI value
 • Using FCI with R_a
 – Improved estimation

– Represented FCI
 • Using CIECAM02 instead of CIELAB