An Effective Technique for Subpixel Image Registration Under Noisy Conditions

IEEE Transactions on Systems, Man, and Cybernetics - Part A
vol. 38, no. 4, Jul. 2008
Li Chen, and Kim-Hui Yap
Presented by Ho-Gun Ha

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Proposed method
 – Conventional method
 • Power spectrum-based techniques
 – Second-order statistics
 • Susceptible to noise
 – Significant performance deterioration
 – Effective higher order statistics method
 • Utilizing the characteristics of bispectrum
 – Suppressing Gaussian noise
Introduction

◆ Image registration
 – Definition
 • Process to establish the point-to-point correspondence between multiple images of the same scene
 – Medical imaging
 – Super-resolution
 – Video surveillance
 – Classification of image registration methods
 • Feature-based techniques
 • Gradient approaches
 • Fourier methods
• Feature based methods
 – Detecting a salient and distinctive features
 » Edges, corners, and contours
 – Matching the correspondence between the observed images

• Gradient approaches
 – Estimation of a parameter using a system of linear equation
 » Optical flow

• Fourier methods
 – Using Fourier shift property
 » Phase factor of exponential
 – Phase correlation method
 » Taking inverse discrete Fourier transform (IDFT) of the normalized cross power spectrum
• Main advantages of frequency-domain algorithms
 – Decoupling the estimation of translation from the estimation of rotation and scaling
 – Computational efficiency due to FFT

More attractive alternative for estimating global motion than spatial-domain techniques
– Subpixel shift estimation
 • Direct subpixel registration method
 – Comparing interpolated image to reference image
 » Minimum error between image pair
 » Fast estimation using ML optimization
 • Indirect subpixel registration method
 – Feature based methods
 » Finding the congruence that minimize the error between features and targets
 – Fourier technique
 » Estimating the best fit phase plane in frequency domain
 » Evaluating the dominant peaks of the IDFT
Problem Formulation

◆ Subpixel shift estimation
 – Noise and aliasing free condition

\[f_k(i, j) = s(i + \delta_{x,k}, j + \delta_{y,k}), \quad k = 1, 2 \] \hspace{1cm} (1)

where \(s \) is the original image.

\(f_k \) is two images that are shifted versions of \(s \).

and \((\delta_x, \delta_y) = (\delta_{x,2} - \delta_{x,1}, \delta_{y,2} - \delta_{y,1})\) is relative translation between images, which is restricted to subpixel level \([0, 1)\).

– Fourier transform of the images
 • Shift property

\[F_1(\omega_1, \omega_2) = F_2(\omega_1, \omega_2)e^{-j(\omega_1\delta_x + \omega_2\delta_y)} \] \hspace{1cm} (2)

where \(F_k(\omega_1, \omega_2) = \mathcal{F}[f_k(i, j)] \) is the FT of \(f_k(i, j) \) \((k = 1, 2)\).
– Normalized cross power spectrum
 • Phase information
 – Critical role in the estimation of subpixel translation

 \[
 P(\omega_1, \omega_2) = \frac{F_1(\omega_1, \omega_2) F_2(\omega_1, \omega_2)^*}{|F_1(\omega_1, \omega_2) F_2(\omega_1, \omega_2)^*|} = e^{-j(\omega_1 \delta_x + \omega_2 \delta_y)}
 \]
 (3)

– Relationship between DFT and continuous FT (CFT)
 • Nyquist-Shannon sampling theorem
 – Equivalent process in band limited or no aliasing image

 \[
 F^D(\omega_1, \omega_2) = \frac{1}{T_x T_y} \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} F^c \left(\frac{\omega_1 + 2\pi i}{T_x}, \frac{\omega_2 + 2\pi j}{T_y} \right)
 \]
 (4)

where \(F^D \) and \(F^C \) denote the DFT and CFT of the image.

and \(T_x \) and \(T_y \) are the sampling periods along the vertical and horizontal axes, respectively.
Noise effect

- Various sources of noise
 - Common factors of noise
 - Photoelectric
 - Film grain
 - Quantization noises
 - Imaging devices (CCD)
 - Thermal noises
 - Shot noises

- Conditions of evident noisy effects
 - Under low lighting conditions
 - High gain of the camera
– Additive noise condition
 • Not ignoring noise term

\[f_k(i, j) = s(i + \delta_{x,k}, j + \delta_{y,k}) + \omega_k(i, j) \quad k = 1, 2 \]

where \(\omega_k \) is the additive noise that arises during the image formation process.

• Normalized cross power spectrum of Eq.(5)
 – Assuming that the noise \(\omega_k \) is independent of \(s \)

\[P(\omega_1, \omega_2) = \frac{\Im \left[R_{f_2,f_1}(\tau_1, \tau_2) \right]}{\Im \left[R_{f_1,f_1}(\tau_1, \tau_2) \right]} \]

\[= \frac{\Im \left[R_{ss}(\tau_1 - \delta_x, \tau_2 - \delta_y) \right] + \Im \left[R_{\omega_k \omega_k}(\tau_1, \tau_2) \right]}{\Im \left[R_{ss}(\tau_1, \tau_2) \right] + \Im \left[R_{\omega_k \omega_k}(\tau_1, \tau_2) \right]} \]

\[= \frac{e^{-j(\omega_1 \delta_x + \omega_2 \delta_y)} + F_{\omega_k \omega_k}(\omega_1, \omega_2) / F_{ss}(\omega_1, \omega_2)}{1 + F_{\omega_k \omega_k}(\omega_1, \omega_2) / F_{ss}(\omega_1, \omega_2)} \]

where \(R_{xy}(\tau_1, \tau_2) \equiv E[x(i, j)y(i + \tau_1, j + \tau_2)] \) is the correlation function between \(x \) and \(y \).
– Approximation of Eq.(6)

• Preconditions of the approximation
 – Neglecting $F_{\omega_1\omega_1}(\omega_1, \omega_2)$ and $F_{\omega_1\omega_2}(\omega_1, \omega_2)$
 » High SNR ($F_{\omega_1\omega_1}(\omega_1, \omega_2) \approx 0$)
 » Uncorrelated noise ($F_{\omega_1\omega_2}(\omega_1, \omega_2) \approx 0$)

• Same result of conventional Fourier method

$$P(\omega_1, \omega_2) \approx e^{-j(\omega_1\delta_x + \omega_2\delta_y)}$$

• Not satisfying the preconditions in some applications
 – Sonar images
 » High noise level
 » Correlated noise sources
Subpixel Registration in the Bispectrum Domain

- Proposed cross-bispectrum method
 - Higher order spectra
 - Higher order cumulants contain additional information that is not conveyed by the signal’s correlation or power spectrum
 - Suppressing additive Gaussian noise
 - Equal to zero of all joint cumulants of the order of >2

- Assumption
 - Nontrivial bispectrum of the original image
 - Non-Gaussian distribution with nonzero skewness
 - zero-mean Gaussian noise
 - Signal-independent random noise
– Third-order auto- and cross-cumulants of observed signals f_1 and f_2

- Zero of all joint cummulants of the order of >2
 - Zero-mean Gaussian noise of w_1 and w_2
 - No interference of Gaussian noise

$$R_{f_i f_i f_i} (\tau_1, \tau_2, v_1, v_2)$$

$$\begin{align*}
\Box E \left[f_i(i,j) f_i(i+\tau_1, j+\tau_2) f_i(i+v_1, j+v_2) \right] \\
= R_{s s s} (\tau_1, \tau_2, v_1, v_2)
\end{align*}$$

$$R_{f_2 f_2} (\tau_1, \tau_2, v_1, v_2)$$

$$\begin{align*}
\Box E \left[f_2(i,j) f_1(i+\tau_1, j+\tau_2) f_2(i+v_1, j+v_2) \right] \\
= R_{s s s} (\tau_1 - \delta_x, \tau_2, v_1, v_2)
\end{align*}$$

where $R_{s s s} (\tau_1, \tau_2, v_1, v_2) \Box E \left[s(i,j)s(i+v_1, j+\tau_2)s(i+v_1, j+v_2) \right]$ is the third-order autocumulant of the desired signal s.

\[(7) \]
– Bispectrums

 • Computing by taking the DFT of the cumulants

\[
F_{f_1 f_1 f_1} (\omega_1, \omega_2, \nu_1, \nu_2) = \mathfrak{F} \left[R_{f_1 f_1 f_1} (\tau_1, \tau_2, \nu_1, \nu_2) \right]
= F_{sss} (\omega_1, \omega_2, \nu_1, \nu_2)
\]

\[
F_{f_2 f_2 f_2} (\omega_1, \omega_2, \nu_1, \nu_2) = \mathfrak{F} \left[R_{f_2 f_2 f_2} (\tau_1, \tau_2, \nu_1, \nu_2) \right]
= F_{sss} (\omega_1, \omega_2, \nu_1, \nu_2) e^{-j(\omega_1 \delta_x + \omega_2 \delta_y)}
\]

(8)

where \(F_{sss} (\omega_1, \omega_2, \nu_1, \nu_2) \) is the autobispectrum of \(s \).
– Phase information
 * Applying normalized cross bispecturm
 – More robust phase information compared with cross power spectrum in noisy environments
 - Independent of the noise distortion terms
 \[F_{\omega_1\omega_1}(\omega_1, \omega_2) \text{ and } F_{\omega_1\omega_2}(\omega_1, \omega_2) \]

\[
P(\omega_1, \omega_2, v_1, v_2) = \frac{F_{f_2 f_2}(\omega_1, \omega_2, v_1, v_2) F_{f_1 f_1}(\omega_1, \omega_2, v_1, v_2)^*}{|F_{f_2 f_2}(\omega_1, \omega_2, v_1, v_2) F_{f_1 f_1}(\omega_1, \omega_2, v_1, v_2)^*|}
\]

\[
= e^{-(\omega_1 \delta_x + \omega_2 \delta_y)}
\] (9)
- Incorporating the Dirichlet estimation scheme
 - Reliable subpixel registration
 \[
 D(x, y) = \mathcal{F}^{-1} \left[P(\omega_1, \omega_2, v_1, v_2) \right] = \mathcal{F}^{-1} \left[e^{-j(\omega_1\delta_x + \omega_2\delta_y)} \right]
 \]
 \[
 = \frac{1}{MN} \frac{\sin(\pi(x - \delta_x))}{\sin(\pi(x - \delta_x)/M)} \frac{\sin(\pi(y - \delta_y))}{\sin(\pi(y - \delta_y)/N)}
 \] (10)
 where \(M \times N \) is the length of IFT.

 - Approximation of Dirichlet function to sinc function
 \[
 D(x, y) \approx \text{sinc}(x - \delta_x)\text{sinc}(y - \delta_y)
 \] (11)
 where the denominator is approximated by \(\lim_{t \to 0} \sin t \approx t \).

 - Taylor series expansion
 \[
 \sin t = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{t^{2k-1}}{(2k-1)!}
 \] (12)
– Effective method of estimating subpixel

 • Solving the nonlinear equations (11)

 – Intermediate steps

 \[
 \begin{align*}
 \frac{D(0, 0)}{D(1, 0)} &= \frac{D(0, 1)}{D(1, 1)} = \frac{\sin(\pi(1 - \delta_x) / M)}{\sin(\pi\delta_x / M)} \approx \frac{1 - \delta_x}{\delta_x}, \\
 \frac{D(0, 0)}{D(0, 1)} &= \frac{D(1, 0)}{D(1, 1)} = \frac{\sin(\pi(1 - \delta_y) / N)}{\sin(\pi\delta_y / N)} \approx \frac{1 - \delta_y}{\delta_y}.
 \end{align*}
 \]

 – Final estimated motion shift

 \[
 \begin{align*}
 \hat{\delta}_x &= \frac{1}{2} \left(\frac{D(1, 0)}{D(1, 0) + D(0, 0)} + \frac{D(1, 1)}{D(1, 1) + D(0, 1)} \right) \\
 \hat{\delta}_y &= \frac{1}{2} \left(\frac{D(0, 1)}{D(0, 1) + D(0, 0)} + \frac{D(1, 1)}{D(1, 1) + D(1, 0)} \right)
 \end{align*}
 \]
Complexity reduction

- Dividing the image into K segments
 - Obtaining the average cumulant
 - Reducing the computational cost of cumulant

\[
R_{f_1, f_1, f_1}(\tau_1, \tau_2, v_1, v_2) = \frac{1}{K} \sum_{i=1}^{K} \hat{R}_{f_1, f_1, f_1}(\tau_1, \tau_2, v_1, v_2) \tag{15}
\]

where \(\hat{R}_{f_1, f_1, f_1}(\tau_1, \tau_2, v_1, v_2) \) is the cumulant of each segment.

Fig. 1. Schematic diagram of the proposed algorithm.
Experimental Results

- Test images
 - Eight test images
 - Resolution of the original images
 - From 512 x 512 to 1704 x 1704

Fig. 2. Test images. (a) “Pentagon” image. (b) “Castle” image. (c) “NTU” image. (d) “Lighthouse” image. (e) “Singapore” image. (f) “Goldhill” image. (g) “House” image. (h) “Window” image.
– Noisy low-quality image pairs
 • Shifting with different pixels
 • Downsampling at different decimation rates
 • Adding different levels of additive white Gaussian noise
– Resolution of noisy low-quality image
 • 128 x 128

Fig. 3. Two samples of the low-quality images used in the experiments.
◆ Image degraded by AWGN
 – Pentagon image
 • 512x512 resolution
 – Downsampling factor (4x4)
 • Different noise level
 – Producing different SNR
 • Subpixel translation

Table 1. Results of sub-pixel registration in AWGN.

<table>
<thead>
<tr>
<th>SNR</th>
<th>Foroosh (0.25, 0.75)</th>
<th>Proposed (0.25, 0.75)</th>
<th>Foroosh (0.75, 0.25)</th>
<th>Proposed (0.75, 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10dB</td>
<td>(0.38, 0.65)</td>
<td>(0.29, 0.68)</td>
<td>(0.64, 0.36)</td>
<td>(0.68, 0.30)</td>
</tr>
<tr>
<td>20dB</td>
<td>(0.31, 0.71)</td>
<td>(0.28, 0.74)</td>
<td>(0.71, 0.31)</td>
<td>(0.74, 0.29)</td>
</tr>
<tr>
<td>30dB</td>
<td>(0.30, 0.73)</td>
<td>(0.27, 0.74)</td>
<td>(0.74, 0.30)</td>
<td>(0.74, 0.28)</td>
</tr>
<tr>
<td>40dB</td>
<td>(0.29, 0.74)</td>
<td>(0.27, 0.74)</td>
<td>(0.74, 0.29)</td>
<td>(0.75, 0.28)</td>
</tr>
</tbody>
</table>
Image degraded by Cross-Correlated channel noise

- Castle
 - 1704x1704 resolution
 - Downsampled factor (8x8)
 - Correlated noise across the channels
 - AWGN of w_1
 - Generated from w_2 using Eq.(16)

$$\omega_2(m, n) = \sum_{i=-3}^{3} \sum_{j=-3}^{3} b(i, j) w_1(m + i, n + j)$$

where $b(i, j) = \exp(-i^2 + j^2)/2$ is a low-pass filter used to simulate the noise that are correlated.
- Different noise level
 - Producing different SNR
- Subpixel translation

Table 2. Results of sub-pixel registration in correlated noise.

<table>
<thead>
<tr>
<th>SNR</th>
<th>(0.125, 0.125)</th>
<th>(0.375, 0.75)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foroosh</td>
<td>Proposed</td>
</tr>
<tr>
<td>10dB</td>
<td>(0.267, 0.255)</td>
<td>(0.151, 0.170)</td>
</tr>
<tr>
<td>20dB</td>
<td>(0.205, 0.199)</td>
<td>(0.135, 0.132)</td>
</tr>
<tr>
<td>30dB</td>
<td>(0.152, 0.150)</td>
<td>(0.132, 0.129)</td>
</tr>
<tr>
<td>40dB</td>
<td>(0.139, 0.137)</td>
<td>(0.128, 0.127)</td>
</tr>
</tbody>
</table>

◆ Image registration for image database
 - Large number of experiments based on all eight test images
 - Different pixel shift
 - Different noise degradations
– Pixel and subpixel-level translation
 • Two-stage coarse-to-fine algorithm
 – Identifying the pixel-level shift using conventional phase correlation
 – Identifying the subpixel-level shift using proposed method

Table 3. Average results of pixel and sub-pixel registration for image database.

<table>
<thead>
<tr>
<th>SNR</th>
<th>(2.25, 1.50) Foroosh</th>
<th>Proposed</th>
<th>(3.66, 4.33) Foroosh</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10dB</td>
<td>(2.42, 1.69)</td>
<td>(2.39, 1.57)</td>
<td>(3.87, 4.67)</td>
<td>(3.86, 4.47)</td>
</tr>
<tr>
<td>20dB</td>
<td>(2.34, 1.67)</td>
<td>(2.37, 1.56)</td>
<td>(3.79, 4.49)</td>
<td>(3.78, 4.39)</td>
</tr>
<tr>
<td>30dB</td>
<td>(2.33, 1.64)</td>
<td>(2.29, 1.44)</td>
<td>(3.59, 4.47)</td>
<td>(3.68, 4.34)</td>
</tr>
<tr>
<td>40dB</td>
<td>(2.29, 1.57)</td>
<td>(2.26, 1.52)</td>
<td>(3.68, 4.35)</td>
<td>(3.64, 4.30)</td>
</tr>
</tbody>
</table>

– Disadvantage of proposed method
 • Higher computational time
 – 10 times Longer than second-order statistics
◆ Real-world image registration
 – Performing SR framework
 • Lack of ground truth in real-world images
 • Not evaluating an objective performance
 – Compared test methods
 • Scale-up LR image
 • Foroosh’s method
 – Sinc function
 • Effective HOS method
 – Proposed method
Fig. 4. Impact of image registration on image SR. (a) Five LR images. (b) Sample of the scaled-up LR images. (c) Reconstruction HR image using the proposed registration method. (d) Reconstruction HR image using the Foroosh’s registration method.
Conclusion

◆ Proposed method
 – New effective technique to address subpixel image registration
 • Reliable image registration
 – Low SNR environment
 – Cross-correlated channel noise
 – Utilizing higher order spectra of observed images
 • Suppressing Gaussian noise
\[f_k(i, j) = s(i + \delta_{x,k}, j + \delta_{y,k}), \quad k = 1, 2 \]

\[(\delta_x, \delta_y) = (\delta_{x,2} - \delta_{x,1}, \delta_{y,2} - \delta_{y,1})\]

\[F_1(\omega_1, \omega_2) = F_2(\omega_1, \omega_2)e^{-j(\omega_1\delta_x + \omega_2\delta_y)} \]

\[F_k(\omega_1, \omega_2) = \Im[f_k(i, j)] \quad f_k(i, j) \quad (k = 1, 2) \]

\[P(\omega_1, \omega_2) = \frac{F_1(\omega_1, \omega_2)F_2(\omega_1, \omega_2)^*}{|F_1(\omega_1, \omega_2)F_2(\omega_1, \omega_2)^*|} = e^{-j(\omega_1\delta_x + \omega_2\delta_y)} \]

\[F^D(\omega_1, \omega_2) = \frac{1}{T_x T_y} \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} F^C \left(\frac{\omega_1 + 2\pi i}{T_x}, \frac{\omega_2 + 2\pi j}{T_y} \right) \]

\[f_k(i, j) = s(i + \delta_{x,k}, j + \delta_{y,k}) + \omega_k(i, j) \quad k = 1, 2 \]
\[k = \frac{D(0, 0)}{D(1, 0)} = \frac{D(0, 1)}{D(1, 1)} \]

\[
\approx \frac{\sin(\rho(1 - \delta_x))}{\sin(\rho \delta_x)} \approx \frac{(1 - \delta_x) - \frac{1}{6} \rho^2 (1 - \delta_x)^3}{\delta_x - \frac{1}{6} \rho^2 \delta_x^3}
\]

\[\rho^2 (1 + k) \delta_x^3 - 3 \rho^2 \delta_x^2 + (3 \rho^2 - 6k - 6) \delta_x + 6 - \rho^2 = 0 \]

\[\omega_2(m, n) = \sum_{i=-3}^{3} \sum_{j=-3}^{3} b(i, j) w_1(m + i, n + j) \]