Resolution Enhancement by Interpixel Interference Elimination

Journal of Electronic Imaging

vol. 16, no.1, 2007

Junwen Wu and Mohan M. Trivedi

Presented by Dae Chul Kim

School of Electrical Engineering and Computer Science

Kyungpook National Univ.
Abstract

◆ Proposed method
 – Resolution enhancement algorithm
 • Iterative method
 – Estimation of interpixel interference
 – Elimination of interpixel interference
 • Use of a Gaussian mixture
 – Local image constraints
 – Local variation indicator (LVI)
 • Recovery of high resolution image by estimating and compensating the missing high-frequency details iteratively
Introduction

◆ Super-resolution

- Definition
 • Estimation of the higher-resolution images from lower-resolution images

- Traditional concept
 • Recovery of a single image from multiple low-resolution input image

- Recent concept
 • Incorporation of the work of recovering a higher-resolution image with a single input image
Proposed method

- Use of Gaussian mixture
 - Confining the Gaussian component
 - Use of image derivative priors
 - Use of Local variation indicator (LVI) in Gaussian weight
 - Incorporation of variant image degradation factor
 » PSF, motion blur, and quantization error
 - Procedure of LVI estimation
 » Estimation from continuous local frames
 » Estimation of interpixel interference by Gaussian mixture

- Repeat interference estimation and elimination until the interpixel interference is negligible
Prior Work

- Traditional image super-resolution method
 - Some techniques
 - Concentration of the resampling procedure during image degradation
 - Dense optical flow for estimating the subpixel motion
 - Convex set constraint
 - Some other techniques
 - Concentration of finding the appropriate regularization constraint for the ill-conditioned problem
 - Representation of forward model in frequency and spatial domain
– Pure global translational motion of the camera

\[I_0(x; t) = I_s(x + \Delta_t) \quad t = 1, \ldots, R \]

where \(\Delta_t \) describes the translational motion for the \(t \)th observation

\(I_0(x; t) \) is \(t \)th observations

\(I_s \) is source

» Representation in the frequency domain

\[
F \{ \{ I_0(x; t) \} \} = e^{j2\pi(\Delta_t^T w)} F \{ I_s(x) \}
\]

(2)
DFT of the shifted and sampled low-resolution images

\[I_y(w; t) = \frac{1}{T_1 T_2} \sum_{i_1=-\infty}^{+\infty} \sum_{i_2=-\infty}^{+\infty} I_0 \left(\frac{w_1}{N_1 T_1} + \frac{i_1}{T_1}, \frac{w_2}{N_2 T_2} + \frac{i_2}{T_2}; t \right) \]

\[w = (w_1, w_2) \]

where \(T_1 \) and \(T_2 \) are sampling intervals

\(N_1 \) and \(N_2 \) are magnification factor in each direction

\(I_0(F\{I_0\}) \) is CFT of the scene

\(I_f(w; t) \) is DFT of the shifted and sampled low-resolution image
- Description of spatial domain approaches

\[L = A_1 \times \cdots \times A_a H + n \]
\[H = [I_h(t-p), \ldots, I_h(t+p)] \]
\[L = [I_l(t-p), \ldots, I_l(t+p)] \]

where \(I_h \) is vector by lexicographically ordered high-resolution image
\(I_l \) is the vector by lexicographically ordered low-resolution image
\(A_1 \times \cdots \times A_a \) is separately model the different deterioration procedure

» MAP estimators using the huber edge-penalty function as a priori in bayesian framework

» Use of a robust regularization as an additional constraint
Recent image super-resolution conception

- Difference from interpolation using different kernels
 - Addition to more compatible details
 - Reduction perceived loss
 - Facilitation of the image representation ability

- Use of Markov random field (MRF)
 - Compensation of the high-frequency component learned from the MRF model

- Spatial and temporal constraint
Proposed algorithm

- Recovery of image details by predicting high-frequency loss iteratively from estimate LVI

Fig. 1. The diagram of the proposed algorithm
Algorithm Framework

- Ideal image acquirement
 - Spatial and temporal direction

\[I = S(x, y; t) * \delta(x - x_i, y - y_i) * \delta(t - t_0) \]

where \(t_0 \) is the 0th image is located at \((x_i, y_i)\)

\(S \) is the 2D continuous function describing the scene

\[\delta(x - x_i, y - y_i) = \begin{cases} 1 & \text{if } x = x_i \text{ and } y = y_i, \text{ and} \\ 0 & \text{otherwise} \end{cases} \]

\[\delta(t - t_0) = \begin{cases} 1 & \text{if } t = t_0 \\ 0 & \text{otherwise} \end{cases} \]
Practical image acquirement

— low pass procedure in the spatial sampling

\[I_0(u, v; t_0) = S(x, y; t) ** h_i(x - u, y - v; t_0) \] \hspace{1cm} (6)

where \((u, v)\) defines pixels on the low-resolution image coordinate system

\[I_0(x_i, y_i; t_0) = S(x, y; t_0) ** h_i(x - x_i, y - y_i; t_0) \] \hspace{1cm} (7)

where \((x_i, y_i)\) is used to represent the discrete sampling of \((x, y)\) on high resolution image coordinate system
• Each low-resolution image pixel corresponds to a disjoint high-resolution image neighborhood

Fig. 2. Illustration of the original low-resolution image coordinate system and the high-resolution image coordinate system.
Gaussian mixture model to predict the interference

— Superposition of the interference from neighbor pixels

\[I_0(x_i, y_i; t_0) = S(x_i, y_i; t_0) + \sum_k f\{i, i_k; t_0\} \quad i_k \in D_i. \quad (8) \]

where \(f\{i, i_k; t_0\} \) is interference on pixel \((x_i, y_i)\) from its neighboring pixel \((x_{i_k}, y_{i_k})\)

• Denotation of neighborhood

\[D_{i} = \{i_k : d(x_i, x_{i_k}) \leq \zeta, x_i = (x_i, y_i), x_{i_k} = (x_{i_k}, y_{i_k})\} \]
— Denotation of integral interference

\[F(i; t_0) = \sum_k f \{ i, i_k; t_0 \} \]

(9)

where \(F(i; t_0) \) is determined by the image derivative prior

— Use of a probability model

• Modeling of probability of integral interference \(F(i; t_0) \) by Gaussian mixture

\[F(i; t_0) \propto \sum_k w_k N \left(f; \partial I(i, i_k; t_0), \sigma d_{i,i_k} \right) \]

(10)

\[\partial I(i, i_k; t_0) = I_0(x_{i_k}, y_{i_k}; t_0) - I_0(x_i, y_i; t_0) \]

where \(w_k \) is the weight for each Gaussian component

\(d_{i,i_k} \) is the Euclidean distance between pixel and its neighboring pixel

\(\partial I(i, i_k; t_0) \) defines image derivative prior between pixel and neighboring pixel
• Gaussian characterization

$$N \left(F; \partial I(i, i_k; t_0), \sigma d_{i,i_k} \right) = \frac{1}{\sqrt{2\pi} \sigma d_{i,i_k}} \times \exp \left\{ -\frac{\left[F - \partial I(x_{i_k}, y_{i_k}; t_0) \right]^2}{2\sigma^2 d_{i,i_k}^2} \right\} \right.$$ (11)

• Scene estimate

$$\hat{S}(x_i, y_i; t_0) = I_0(x_i, y_i; t_0) - \hat{F}(i; t_0)$$ (12)

where $\hat{S}(x_i, y_i; t_0)$ is the scene estimate
◆ Find the weights from prior knowledge
 — Inclusion of observation error of neighbor pixel in image derivative priors
 — Determination of reliability for each neighboring pixel by determining temporal and spatial variation
 — Introduction of LVI to incorporate temporal and spatial variation
 — Use of LVI to determine the confidence level for the component Gaussians
Temporal variation

— Modeling of the temporal noise of the scene

\[I_0(x_i, y_i; t_0 + \tau) = S(x_i, y_i; t_0) + n(x_i, y_i; t_0 + \tau) \]

\[\tau = -p, \ldots, p \]

Where \(n \) is the noise

— Estimation of ML for scene with \(2p + 1 \) observations

\[\hat{S}_{ML}(x_i, y_i; t_0) = \frac{1}{2p + 1} \sum_{\tau=-p}^{p} I_0(x_i, y_i; t_0 + \tau) \]

— Definition of temporal variation as bias from the current observation to the ML estimate

\[b_i(t_0) = I_0(x_i, y_i; t_0) - \hat{S}_{ML}(x_i, y_i; t_0) \]
◆ Spatial variation
 — Assumption
 • unknown and non-uniform point spread function (PSF) to obtain more general for real data
 — Use of a local model for describing the low-pass filtering process
 • Assumption
 – Sufficiently slow local low-pass filtering process
 – Keep of continuous $2p + 1$ frames
— Filtering procedure

\[\sum_{i} S(x_i, y_i; t_0 + \tau)v(x_i, y_i; t_0) = I_0(u, v; t_0 + \tau) \] \hspace{1cm} (13)

\[i \in Q; \quad \tau = -p, ..., p \]

where \(I_0(u, v; t_0 + \tau) \) is the pre-interpolated low-resolution image

\(v(x_i, y_i; t_0) \) are filter coefficients

— Rewriting matrix format

\[S^T(t_0 + \tau)v(t_0) = I_0(u, v; t_0), \] \hspace{1cm} (14)

where \(S \) is the matrix whose column vector are lexicographically ordered pixel from \(Q \)

\(I_0 \) is the vector formed by the low-resolution pixel \((u, v; t_0 + \tau) \) \(\tau = -p, ..., p \)
— Definition of optimal filtering parameter

• Objective function

\[
J(v(t_0)) = \sum_{\tau=-p}^{p} \sum_{i} \left[K \times I_0(u, v; t_0 - \tau) - v(x_i, y_i; t_0)S(x_i, y_i; t_0 - \tau) \right]^2 + \lambda \Delta v(t_0)
\]

(15)

Where \(K \) is the number of pixels inside neighborhood \(Q \)

• Smoothing term

\[
s.t.: \|v(t_0)\|_1 = 1.
\]

(16)

\[
\Delta v(t_0) = \|\partial_x v(t_0)\|_2 + \|\partial_y v(t_0)\|_2 + \|\partial_{xy} v(t_0)\|_2 + \|\partial_{yx} v(t_0)\|_2.
\]

(17)
• Obtainment of the parameters by a one-step steepest descent

\[
\hat{v}(x_i, y_i; t_0) = v_0 + \mu \sum_{\tau=-p}^{p} \left[I_0(u, v; t_0 - \tau) - v_0 S(x_i, y_i; t_0 - \tau) \right] S(x_i, y_i; t_0 - \tau)
\]

where \(v(t_0) = v_0 \)

• Normalization

\[
v(x_i, y_i; t_0) = \frac{\hat{v}(x_i, y_i; t_0)}{\|\hat{v}(t_0)\|_1}
\]

\[
\hat{v}(t_0) = [\hat{v}(x_i, y_i; t_0)]_i
\]

• Update

\[
v(x_i, y_i; t_0) \leftarrow v(x_i, y_i; t_0) - v_0
\]
Overall algorithm

- Modeling of LVI as a function $g(\square)$

$$w(i; t_0) = g\left\{-\left[b_i(x_i, y_i; t_0)v(x_i, y_i; t_0)\right]^2\right\}$$

- Use of exponential function

$$w(i; t_0) = \exp\left\{-\left[b_i(x_i, y_i; t_0)v(x_i, y_i; t_0)\right]^2\right\}$$ (20)

- Use of maximum a posteriori (MAP) criteria to estimate $\hat{F}(i; t_0)$

$$\hat{F}(i; t_0) = \arg \max_F (G(F))$$ (21)

where $G(F) = \sum_k w(i_k; t_0)N(F; \partial I(i, i_k; t_0), \sigma d(i, i_k))$
— Finding of the MAP solution by the steepest descent method

\[F^{j+1}(i; t_0) = F^j(i; t_0) - \alpha \nabla G \]

\[\nabla G = \frac{\partial}{\partial F} G(F) \bigg|_{F_j} = \sum_k \frac{w_{ik}}{\sqrt{2\pi\sigma_d^2}} \frac{\partial I(i, i_k) - F^j}{\sigma_d^2 d_{i_k}^2} \times \exp \left\{ -\frac{\left[F^j - \partial I(i, i_k) \right]^2}{2\sigma_d^2 d_{i_k}^2} \right\} \]

(22)

— Update of the scene estimate

\[\hat{S}(x_i, y_i; t_0) = I_0(x_i, y_i; t_0) - \hat{F}(i, t_0) \]

(23)

— Update of all images

\[I_0^{(new)}(x_i, y_i; t_0 + \tau) \leftarrow \hat{S}(x_i, y_i; t_0 + \tau) \quad \tau = -p, \ldots, p \]
Example of procedure

Fig. 3. The iterative procedure for high-resolution reconstruct.
More discussion in the frequency domain

— Observation at pixel \((x_i, y_i)\)

\[
I(x_i, y_i; t_0) = (h_l ** S)(x_i, y_i; t_0)
\]
(24)

— Rewriting in frequency domain

\[
I(w_1, w_2; t_0) = \mathcal{F}(I_{(x_i, y_i; t_0)})
\]

\[
S(w_1, w_2; t_0) = \mathcal{F}(S_{(x_i, y_i; t_0)})
\]

\[
L(w_1, w_2; t_0) = \mathcal{F}(L_{(x_i, y_i; t_0)})
\]

\[
I(w_1, w_2; t_0) = L(w_1, w_2; t_0) \mathcal{F}(w_1, w_2; t_0)
\]
(25)

Where \(\mathcal{F}(\cdot)\) is the Fourier transform,

\[
H(w_1, w_2; t_0) = I(w_1, w_2; t_0) - L(w_1, w_2; t_0)
\]

is responding high-pass filter for \(L(w_1, w_2; t_0)\),

and \(I(w_1, w_2; t_0)\) is an all pass filter.

— Error

\[
\varepsilon(w_1, w_2; t_0) = H(w_1, w_2; t_0) \mathcal{F}(w_1, w_2; t_0)
\]
(26)
— Unknown true scene $S(w_1, w_2; t_0)$

- Prediction of the error by using the current high-resolution estimate
 \[
 \varepsilon(w_1, w_2; t_0) = H(w_1, w_2; t_0)I_0(w_1, w_2; t_0)
 \] \hspace{1cm} (27)

- Summary of the procedure in the frequency domain
 - Prediction of the high-frequency component, or the function of the interpixel interference
 \[
 \hat{\varepsilon}(w_1, t) = H(w_1, w_2; t_0)I^{old}(w_1, w_2; t_0)
 \] \hspace{1cm} (28)
 - Refinement of the HR estimates
 \[
 I^{new}(w_1, w_2; t_0) = I^{old}(w_1, w_2; t_0) + \hat{\varepsilon}(w_1, w_2; t_0)
 \] \hspace{1cm} (29)

\[
I^{new}(w_1, w_2; t_0) = [L(w_1, w_2; t_0) + L(w_1, w_2; t_0)H(w_1, w_2; t_0)] \times S(w_1, w_2; t_0)
\] \hspace{1cm} (30)
• **1D illustration**

![1D illustration of the refinement procedure](image)

Fig. 4. 1D illustration of the refinement procedure

• **The flowchart of the algorithm**

![Flowchart of the algorithm](image)

Fig. 5. The flowchart of the algorithm
Experimental Evaluation

◆ Face videos with changes in expression
 — Some result from the super-resolution reconstruction

Fig. 6. Example of the experimental results

— Another result

Fig. 7. More results for sequences from Cohn-Kanade facial expression database
Video with Large Head Motion

Fig. 8. Example from sequence with large head motion
Using linear motion blur filter

Fig. 9. Interpixel interference elimination-based resolution enhancement for motion-blurred color face video
Video from an omnidirectional video camera

— Omnidirectional image

Fig. 10. Example image from the ODVC
— Output from ODVC

![Images showing resolution enhancement examples](image)

Fig. 11. Example of the resolution enhancement
Quantitative Comparison
— Quantitative performance evaluation

Fig. 12. Example of the HR reconstruction
Quantitative performance evaluation

Table 1. The mean of each frame’s PSNR for different algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Interpixel Interference Elimination Algorithm</th>
<th>Borman’s Algorithm</th>
<th>IBP Algorithm with Mean</th>
<th>IBP Algorithm with Median</th>
<th>IBP Algorithm with Median and Bias Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean PSNR</td>
<td>61.80 dB</td>
<td>61.72 dB</td>
<td>58.78 dB</td>
<td>58.84 dB</td>
<td>59.73 dB</td>
</tr>
</tbody>
</table>

Fig. 13. The PSNR of different algorithms

Fig. 14. Mean MSE over all frames with respect to frequency
Other Example

— Proposed algorithm over text subject to evaluate the performance

Fig. 15. Example for synthetic text subject
— Proposed algorithm over text subject to evaluate

Fig. 16. Example for text subject
— Presentation of different magnification factors

Fig. 17. Example for license plate
Conclusion

◆ Proposed method
 – Reconstruction of high-resolution image
 • Interpixel interference elimination
 – Actual interpretation as high-frequency loss
 – A probability model using Gaussian mixture
 » Confinement by the image derivative priors
 » Local variation indicators
 – By subtracting the estimated interpixel interference iteratively