Colorimetric characterization of scanner
by measures of perceptual color error

hui-Liang Shen, Tong-Sheng Mou and John H. Xin

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Colorimetric characterization of color scanner
 – Based on the measures of perceptual color difference error
 – First method
 • To minimize the total color difference between the actual and predicted color samples
 – Second method
 • Generalization of the existing cubic-root preprocessing technique
 • Mapping between the p’th root of scanner responses and CIELAB

◆ Experiment result
 – Second method is better than those of the traditional CIEXYZ space-based characterization methods
1. Introduction

- Goal of scanner characterization
 - Transform the device-dependent scanner response (RGB) to device-independent colorimetric value (CIELAB)

- Colorimetric characterization methods
 - Neural networks, look-up table, and polynomial regression
 - General Polynomial regression
 - Transform RGB values to the CIEXYZ values
 - Least-squares (LS) and total least-squares (TLS) methods
 - Nonlinear transform between CIEXYZ and CIELAB
 - Optimal solution in CIEXYZ space does not mean the minimization of color difference in CIELAB space
Proposed method

- Calculating the transform between RGB and CIEXYZ values by minimization of total color difference (TCDM)
- Transform the p’th root of RGB to CIELAB values using Least squares (LAB-LS)
 - Generalization of the existing polynomial regression techniques
 - Adopting the cubic root of RGB values as a preprocessing step
2. Scanner characterization

Problem formulation

- Scanner response v
 \[v = M_s L_s r \] (1)
- Nonlinear optoelectronic conversion function of common scanner
 \[\rho = F(v) = F(M_s L_s r) \] (2)
- CIE tristimulus values
 \[b = M_c L_c r \] (3)
- Purpose
 - Calculating CIE XYZ values from scanner responses
- Three-order cross-terms of elements in v (M=20)

\[a_n \equiv a_{i,j,k} = v_1^i v_2^j v_3^k, \quad 0 \leq i + j + k \leq 3, \quad 1 \leq n \leq M \quad (4) \]

- Obtaining b using transform matrix H

\[a^T H = b^T \quad (5) \]

- Collecting the polynomial terms using K color samples

\[AH = B \quad (6) \]

where \(H = [h_1, h_2, h_3] \) and \(B = [b_1, b_2, b_3] \)
◆ LS and TLS methods

- LS method
 • Assume that the matrix A is free of error
 • Find a solution h_j that minimizes equation (7)
 \[J_{LS} = \| b_j - \hat{b}_j \| \text{ subject to } Ah_j = \hat{b}_j \]

- TLS method
 • Considering errors in both the vector b_j and the matrix A
 • Find a solution h_j that minimizes equation (8)
 \[J_{TLS} = \| [A; b_j] - [\hat{A}; \hat{b}_j] \|_F \text{ subject to } \hat{A}h_j = \hat{b}_j \]
 where $\| \|_F$ is Frobenius norm
◆ TCDM and LAB-LS Methods

 - LS and TLS methods
 - The difference of statistical distribution for color difference error between in CIELAB space and in CIEXYZ space
 - because of the nonlinear cubic-root transform

 - TCDM
 - Obtaining the solution by minimizing the following error term
 \[
 J_{TCDM} = \sum_{k=1}^{K} \Delta E_{ab}^* \quad \text{subject to } AH = \hat{B} \quad (9)
 \]
 - Obtaining starting point, H, by the LS method
- LAB-LS method
 - Transform function mapping CIEXYZ to CIELAB
 \[c = T_{Lab} (b) \] \hspace{1cm} (10)
 - To cancel out the cubic root the transform \(T_{Lab} \)
 \[u = T_p (v) = v^{1/p} \] \hspace{1cm} (11)
 \(p \) is an integer such as 3,6,9, etc.
 - Calculating the high-order polynomial terms of \(u \)
 - Obtaining the transform matrix \(H \) under the LS method
3. Experimental evaluation and discussion

- **Circumstance**
 - Color target
 - Calculating the inverse optoelectronic conversion function
 - Kodak Gray Scale Q-14(Q14)
 - Evaluating the color accuracy of each characterization methods
 - GretagMacBeth ColorChecker DC(CDC) and Kodak Q60 photographic standard (IT8)
 - Epson GT-10000+ at an appropriate resolution
 - Measuring the Spectral reflectance
 - CDC and Q14 : GretagMacbeth Spectrophotometer 7000A
 - IT8 : GretagMacbeth spectrolino spectrophotometer
 - Under D65
– Samples
 • Using two-thirds of samples for training
 • Using the rest for testing purpose
– Adopting the color difference formula ΔE_{94}^*
 • Close to visual perception

Table 1. Influence of the p value on color accuracy for the LAB-LS method when color target CDC was used.

<table>
<thead>
<tr>
<th>p value</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ΔE_{94}</td>
<td>2.49</td>
<td>1.43</td>
<td>1.32</td>
<td>1.29</td>
<td>1.28</td>
</tr>
</tbody>
</table>
– Color difference errors of the LS, TLS, TCDM, and LAB-LS

Table 2. Color accuracies for the LS, TLS, TCDM, and LAB-LS methods in terms of means, standard deviation (Std.), and maximum (Max.) of ΔE_{94} using color targets CDC and IT8.

<table>
<thead>
<tr>
<th></th>
<th>ΔE_{94} Training</th>
<th>ΔE_{94} Testing</th>
<th>ΔE_{94} Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std.</td>
<td>Max.</td>
</tr>
<tr>
<td>CDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>1.72</td>
<td>1.82</td>
<td>12.90</td>
</tr>
<tr>
<td>TLS</td>
<td>2.73</td>
<td>6.23</td>
<td>51.66</td>
</tr>
<tr>
<td>TCDM</td>
<td>1.54</td>
<td>1.54</td>
<td>8.51</td>
</tr>
<tr>
<td>LAB-LS</td>
<td>1.33</td>
<td>1.14</td>
<td>6.65</td>
</tr>
<tr>
<td>IT8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>1.24</td>
<td>1.08</td>
<td>6.73</td>
</tr>
<tr>
<td>TLS</td>
<td>1.41</td>
<td>1.25</td>
<td>6.73</td>
</tr>
<tr>
<td>TCDM</td>
<td>1.19</td>
<td>0.94</td>
<td>5.59</td>
</tr>
<tr>
<td>LAB-LS</td>
<td>0.85</td>
<td>0.49</td>
<td>2.63</td>
</tr>
</tbody>
</table>
- LS is better than TLS
 - Errors in matrix A do not satisfy the conditions required by the TLS method
 - Colorimetric values B were measured by spectrophotometers with high accuracy
- TCDM vs. LS
 - The improvement of TCDM is slight
 - TCDM failed to find the global optimal solution due to the large size of the transform matrix H
- LAB-LS
 - Better than the other methods
 - Additional advantage
 - Can be solved in a closed form and does not require iterative searching like the TCDM method
Distribution of color difference with respect to lightness range for all the samples on CDC

- The lightness CIE L is more uniform than luminance CIE Y

Fig. 2. Distribution of ΔE_{94}^* with respect to the lightness range of the LS and LAB-LS methods for the CDC target. The Y error bars show ±1 standard deviation.
5. Conclusion

- Proposed two methods, TCDM and LAB-LS
 - Considering the limitation of the LS and TLS
 - Using perceptual color difference error in CIELAB space
 - LAB-LS is best
 - TCDM is better than the LS and TLS methods