Tone Reproduction: A Perspective from Luminance-Driven Perceptual Grouping

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005

Hwann Tzong Chen, Tyng-Luh Liu, and Tien Lung Chang

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Tone reproduction
 – Compression of HDR luminance for display

◆ Proposal
 – Luminance-driven perceptual grouping process
 • Sparse representation of HDR luminance
 • Approximation of local properties of luminance
 – Piecewise tone mapping
 • Monotonize of the relative brightness
Introduction

◆ Related work
 – Global mapping (uniform mapping)
 • Good efficiency
 • Smoothing
 – Local mapping (nonuniform mapping)
 • Properties
 – Improvement of visual fidelity
 – Usage of local adaptation to match human perception
 – Overemphasis
 » Halo effect
• Center-surround manner
 – visual cells
 – Calculation of the average intensity of a proper circular region to adjust a mapping function

• Decomposing a radiance map
 – Illumination layer
 » Luminance information
 » Wider dynamic range
 » Compression for tone reproduction
 – Reflectance layer
 » Textures
 » Low dynamic range

– Segmentation view point

• Method
 – Segmentation of an image into zones of similar values
 – Computation of the average intensity of each zone
 – Usage of the average value to use nonuniform tone mapping function
Our approach

– Grouping process
 • Sparse representation for HDR images

– Tone mapping
 • Estimation of local adaptation luminance
 – Preservation of local details and global perceptual impression
 • Piecewise tone mapping
L (Luminance in a 32bit RGB HDR image)

Luminance map

Sparse representation

$\log(L)$

Adaptive block partition
Perceptual grouping

Region-wise tone mapping

L' (Displayable luminance)

Application of the ratio L'/L to HDR RGB channel
A sparse representation for HDR images

◆ Procedure
 – Obtainment of the luminance map from HDR
 \[L(x, y) = 0.2126R(x, y) + 0.7152G(x, y) + 0.0722B(x, y) \]
 – Sparse representation
 • Decomposition of HDR image into a perceptual grouping
 • Two steps
 – Adaptive block partition
 – Perceptual grouping
 – Compression with region-wise
◆ Adaptive block partition

– Usage of the logarithmic domain
 • Perception of intensity ratio for the HVS sense
 \[\tilde{L}(x, y) = \log L(x, y) \]

– Partition of the image with blocks
 • Prevention of time consuming and noise sensitivity
 • Usage of two size blocks
 – Smaller blocks for edge area \((b_s \times b_s = 2 \times 2)\)
 – Bigger blocks for flat area \((b_l \times b_l = 8 \times 8)\)
 • Usage of Canny edge detector for finding edges

Fig. 1. Log luminance and adaptive block partitions.
Perceptual Grouping

- Perceptual distance

 • Evaluation of the perceptual similarity

 • Usage of earth mover’s distance (EMD)
 - Conversion of the luminance value in the blocks into signature
 - Method

 » Division of the dynamic range of a block into three bins
 » Calculation of the mean s_i and pixel number h_i in each bin
 » Calculation of weights, $w_i = h_i / \sum_j h_j$
 » Presentation of the signature p_i as the signature of region \mathcal{R}_k

 \[p = \{(s_1, w_1), (s_2, w_2), (s_3, w_3)\} \]

 - Definition of perceptual distance

 \[D(\mathcal{R}_1, \mathcal{R}_2) = \text{EMD}(p_1, p_2) \] \hspace{1cm} (1)
Luminance-driven grouping

- **Brightest-block-first rule**
 - Comparison of the s_i for each block to identify the brightest block

- **Grouping**
 - Mark all blocks as *unvisited*
 - Set the brightest block as B_i
 - Grow the region from R_k where k is the number of region
 - Smaller EMD than δ ($0.5 \leq \delta < 1.0$)
 - Stop growing when EMD is in the threshold, θ ($1.0 \leq \theta < 1.5$)

Fig. 1. The parse representation of 8 regions and the result from our method.
Region-based tone mapping

◆ Local adaptation luminance for tone mapping
 – Local adaptation effect
 • Average log-luminance of a suitable neighborhood for each pixel
 – Bilateral filtering method
 • Calculation of the local adaptation log-luminance at \((x,y)\) in region \(\mathcal{R}_k\)
 • Computation of bilateral effects from difference regions
• Equation for the local adaptation log-luminance

\[
\tilde{V}(x, y) = \frac{1}{\tilde{Z}_{x,y}} \left\{ \sum_{(i,j) \in R_k} \tilde{L}(i, j)G_{x,y}(i, j)K_{x,y}(i, j) \right\} + \sum_{(i,j) \notin R_k} \tilde{L}(i, j)G_{x,y}(i, j)K'_{x,y}(i, j) \}
\]

(2)

Where

\[G_{x,y}(i, j) = \exp\left\{ -((i - x)^2 + (j - y)^2) / 2\sigma_s^2 \right\} \]

\[K_{x,y}(i, j) = \exp\left\{ -(\tilde{L}(i, j) - \tilde{L}(x, y))^2 / 2\sigma_r^2 \right\} \]

\[K'_{x,y}(i, j) = \exp\left\{ -(\tilde{L}(i, j) - \tilde{L}(x, y))^2 / 2\sigma_r' \right\} \]

\[\tilde{Z}_{x,y} = \sum_{(i,j) \in R_k} G_{x,y}(i, j)K_{x,y}(i, j) + \sum_{(i,j) \notin R_k} G_{x,y}(i, j)K'_{x,y}(i, j) \]

\[\sigma_r \geq \sigma_r' \]

More expanded range in the same region

\[\sigma_s \text{ is 4\% of image size, } \sigma_r = 0.4, \text{ and } \sigma_r' = 0.5 \times \sigma_r \]

• Local adaptation luminance

\[V = \exp(\tilde{V}) \]
件wise tone mapping
– Review of Compression of the high luminance into displayable range
 • Global mapping with Smoothing effect
 – Good property at monotone for preventing halo effect
 \[L' = \varphi(L) = \frac{L}{1 + L} \]
 Where \(0 \leq L' \leq 1 \) is displayable range.
 • Local mapping for preserving details
 \[H = \frac{L}{V} : \text{Detail layer} \]
 \[V' = \varphi(V) : \text{Compression of local adaptation luminance} \]
 \[L' = H \times V' = \left(\frac{L}{V} \right) \times \left(\frac{V}{1 + V} \right) = \frac{L}{1 + V} \]
 Where \(L' \) is displayable luminance.
– Piecewise tone mapping

• Design a local mapping, ψ

\[
\psi(L, V; \rho, \gamma) = \left(\frac{L}{V} \right)^\rho \varphi^\gamma(V) = \left(\frac{L}{V} \right)^\rho \left(\frac{V}{1+V} \right)^\gamma
\]

(3)

Where $0 < \rho < 2$ and $0 < \gamma \leq 1$ are spatial-dependent parameters.

– $\gamma = 0.3$ at this experiments

• Globally reshape

– Mapping the luminance range into $[0, 1]$

\[
\tilde{\varphi}^\gamma = \alpha \varphi^\gamma + \beta
\]

Where α is the scaling parameter and β is the shifting parameters.

\[
\begin{bmatrix}
\tilde{\varphi}^\gamma(L_{\text{max}}) \\
\tilde{\varphi}^\gamma(L_{\text{min}})
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}
=
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

(4)
• Estimate ρ by kernel smoothing
 – Construction of D_k within \mathcal{R}_k
 » Largest grid with $\epsilon \times \epsilon$ resolution from the region boundary $\partial \mathcal{R}_k$
 – Assignment of some preliminary ρ_n value to each pixel $n \in D_k$
 $$\rho_n = \begin{cases}
 \gamma, & \text{if } \log(L_n/V_n) \leq -1, \\
 (\gamma + \rho_{\text{max}})/2, & \text{if } \log(L_n/V_n) \geq 1, \\
 \rho_{\text{max}}, & \text{otherwise.}
 \end{cases}$$

 » Overemphasis with a larger ρ_n at very different values between L_n and V_n
 » $\rho_n = \gamma$ on $\partial \mathcal{R}_k$ for all pixels
 – Interpolation of the ρ_n value between D_k and $\partial \mathcal{R}_k$
 – Kernel smoothing after assignment on the whole image
- ρ_n value after kernel smoothing in fig 3.
 $\Rightarrow \rho_{\text{max}} = 1.8$ and $\epsilon = 4$ in the experiments

Fig. 3. The ρ value after kernel smoothing.
• Monotonization of local tone mappings
 – Estimation of α_k and β_k
 » Elevation of ψ into $\tilde{\psi} = \alpha_k \psi + \beta_k$
 » Compression of the luminance with both local and global factor
 – Method
 » Sampling N pixels from ∂R_k according to the sorted $|\log(L_n / V_n)|$ values in ascending order
 » Condition for calculating α_k and β_k

\[
\begin{bmatrix}
\psi_1 & \cdots & \psi_N \\
1 & \cdots & 1
\end{bmatrix}^T
\begin{bmatrix}
\alpha_k \\
\beta_k
\end{bmatrix} =
\begin{bmatrix}
\tilde{\phi}_1^\gamma & \cdots & \tilde{\phi}_N^\gamma
\end{bmatrix}^T
\]
– Final displayable luminance value, $L'(x,y)$

$$\tilde{\psi}(L, V; \rho, \gamma) = \alpha_k \psi(L, V; \rho, \gamma) + \beta_k$$

• Emphasis of the local details of each region without breaking the global visual consistency

◆ Whole procedure

Fig. 4. The steps of our tone reproduction method.
Experiments and Discussions

- Radiance map with multi exposure values
 - 250,000:1 dynamic range

Fig. 5. Radiance map on a fixed displayable range.
Comparison with other result

- Better at the brighter area
- Better contrasts and more details
 - Usage of ρ and γ

(a) Bilateral filtering (b) Photographic tone reproduction (c) Our method (d) Gradient domain

Fig. 2. Result for comparison.
Result images
 – Overall impression luminance
 – Details and local high contrast

Fig. 6. HDR tone-reproduction results
– Comparison

• Brighter luminance at the sun between (a) and (b)
• Reduction of halo effect in (d) at skyline and near the shadow
• Lower contrast along boundaries

Fig. 7. Result for comparison.
Conclusion

◆ Investigation of tone reproduction problems
 – Local adaptation luminance for details
 – Region-wise compression for the overall impression

◆ Proposal
 – Luminance-driven perceptual grouping based on EMD perceptual distance
 – Improvement of tone mapping functions