Digital Camera Zooming Based on Unified CFA Image Processing Steps

IEEE Transaction on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004

R. Lukac, K. Martin, and K. N. Plataniotis

School of Electrical Eng. and Computer Sci.
Kyungpook National Univ.
• Proposal of the resuable, low-complexity operation to achieve high-quality zoomed output for single-sensor digital camera
 • Compact and low-cost single-sensor solutions often lack optical zooming capabilities and thus depends on digital techniques
 • Computational power required for high-quality output using traditional techniques is generally too prohibitive to implement in such devices
 • High-level system components are color filter array(CFA) zooming, CFA interpolation(demosaicking) and demosaicked image postprocessing.

Fig.1. A single-sensor architecture
Introduction

- The single-sensor camera is embedded in the mobile phone
- Zooming functionality is usually augmented using digital interpolation after demosaicking of Bayer pattern image into full color image
 - Amplifying the lack of sharpness and false color artifacts present in demosaicked image
 - Requiring the computational and memory of full color interpolation
 - Making it prohibitive for hardware implementation

Fig. 2. Bayer patterns
The introduction of a cost-effective digital zooming solution for single-sensor digital camera

- Three steps: CFA zooming, CFA interpolation (demosaicking), and demosaicked image post-processing
- Utilizing the local color ratio and edge-sensing weight coefficient in each above sub-procedure, resulting in cost-effective hardware implementation
 - Local color ratio is to reduce output color artifacts
 - Edge-sensing mechanism is to track varying image statistics
- $K_1 \times K_2$ Bayer CFA image

\[
b_{(m,n)} = \begin{cases}
(b_{(m,n)1}, 0, 0) & \text{for (odd } m, \text{ even } n), \\
(0, 0, b_{(m,n)3}) & \text{for (even } m, \text{ odd } n), \\
(0, b_{(m,n)2}, 0) & \text{otherwise.}
\end{cases}
\]

Where (m, n) denotes spatial position $b_{(m,n)k}:$ available color component for $k = 1, 2, 3$
− Unified camera image processing system
 • CFA zooming
 ◆ Generate a higher resolution Bayer CFA image from the original CFA
 • CFA interpolation
 ◆ Generate a full color image from the higher resolution CFA image
 • Post-processing
 ◆ Reduce distracting artifacts and enhancing the sharpness in final output

− Key point of the unified system
 • Implementation of only a small number of basic, low-complexity operation
 • Execution of the CFA zooming before demosaicking
A. CFA Zooming

Principle of the Bayer data zooming

- Original CFA data should be assigned unique position which correspond to the Bayer pattern of an enlarged image

\[\lambda_K \times \lambda_K \text{ Bayer image} \]

\[
\begin{align*}
 x_{(2m-1,2n)} &= b_{(m,n)} \quad \text{for (odd } m, \text{ even } n) \\
 x_{(2m,2n-1)} &= b_{(m,n)} \quad \text{for (even } m, \text{ odd } n) \\
 x_{(2m-1,2n-1)} &\quad \text{otherwise}
\end{align*}
\]

where \(b_{(m,n)} \): original CFA image

\(X \): zoomed image

\((m,n) \): coordinate in original CFA image
Missing G component $x_{(r,s)2}$

- Weighted sum of the surrounding original G components $x_{(r,s)2}$

$$x_{(r,s)2} = \sum_{(i,j) \in \xi} w_{(i,j)} x_{(i,j)2}$$

$$\xi = \{(r - 2, s), (r, s - 2), (r, s + 2), (r + 2, s)\}$$

$$w_{(i,j)} = u_{(i,j)} / \sum_{(g,h) \in \xi} u_{(g,h)}$$

- Positive edge-sensing coefficients

$$u_{(i,j)} = \frac{1}{1 + \sum_{(g,h) \in \xi} \left| x_{(i,j)k} - x_{(g,h)k} \right|}$$

1. Denominator: Absolute difference between the CFA input located at (i,j) and the rest of the CFA inputs describe by ξ

2. Preserving edge features by detecting the trend of the surrounding components
◆ Remaining missing G component
 • Incorporating two original G components and two interpolated G components from the previous step

\[
X_{(r,s)} = \sum_{(i,j) \in \zeta} W_{(i,j)} X_{(i,j)2}
\]

\[
W_{(i,j)} = \frac{u_{(i,j)}}{\sum_{(g,h) \in \zeta} u_{(g,h)}}
\]

\[
\zeta = \{(r-1,s-1), (r-1,s+1), (r+1,s-1), (r+1,s+1)\}
\]

\[
u_{(i,j)} = \frac{1}{1 + \sum_{(g,h) \in \zeta} \left| X_{(i,j)k} - X_{(g,h)k} \right|}
\]
Constitution of the missing R components

- The missing R(or B) component at the center of the surrounding structure is estimated using the surrounding local color ratio(LCR) and G component adjacent to the center.

LCR is defined as (R/G, B/G)

\[
x_{(r,s)} = x_{(r,s-1)} + \sum_{(i,j) \in \zeta} w_{(i,j)} \{ x_{(i,j)} / x_{(i,j-1)} \}
\]

\[
\zeta = \{(r-2,s-2),(r-2,s+2),(r+2,s-2),(r+2,s+2)\}
\]

\[
R(r,s) = G(r,s-1).
\]

\[
\begin{align*}
R(r,s-2) & \quad G(r-2,s-3) \\
R(r+2,s-2) & \quad G(r+2,s-3)
\end{align*}
\]

\[
\begin{align*}
w_{r-2,s-2} & \quad R(r-2,s-2) + w_{r-2,s+2} R(r-2,s+2) \\
w_{r+2,s-2} & \quad R(r+2,s-2) + w_{r+2,s+2} R(r+2,s+2)
\end{align*}
\]
Remaining missing R

- Same as the previous method except with the diamond-shaped structure of both original and interpolated R components location

\[
x_{(r,s)1} = x_{(r,s-1)2} \sum_{(i,j) \in \zeta} w_{i,j} \left\{ x_{(i,j)1} / x_{(i,j-1)2} \right\}
\]

\[
\zeta = \{(r-2,s), (r, s-2), (r, s+2), (r+2, s)\}
\]
Constitution of the missing B components

- G components is positioned on unit downward
B. CFA interpolation

- Estimating the missing R and B color components utilizing the weighting and LCR model same as previous CFA zooming step

\[x_{(r,s)} = \sum_{(i,j) \in \zeta} W_{(i,j)} x_{(i,j)} \]

\[\zeta = \{(r - 1, s), (r, s - 1), (r, s + 1), (r + 1, s)\} \]

\[W_{(i,j)} = \frac{u_{(i,j)}}{\sum_{(g,h) \in \zeta} u_{(g,h)}} \]

\[u_{(i,j)} = \frac{1}{1 + \sum_{(g,h) \in \zeta} \left| x_{(i,j)k} - x_{(g,h)k} \right|} \]
Interpolation of the R and B component

- LCR is generated using G components in the same spatial position as the R or B

\[
x_{(r,s)k} = x_{(r,s)2} \sum_{(i,j) \in \zeta} w_{(i,j)} \{x_{(i,j)k} / x_{(i,j)2}\}
\]

\[
\zeta = \{(r-1,s-1),(r-1,s+1),(r+1,s-1),(r+1,s+1)\}
\]
C. Post-processing

- Employing the post-processing to reduce false color artifacts and enhance sharpness
 - Taking advantage of the underlying Bayer pattern present before the CFA interpolation
 - Iterative update of the components estimated during CFA interpolation

- Update of the G-components estimated during CFA interpolation using an LCR

\[
x_{(r,s)2} = x_{(r,s)k} \sum_{(i,j) \in \zeta} W_{(i,j)} \left\{ \frac{x_{(i,j)2}}{x_{(i,j)k}} \right\}
\]

\((r,s)\) : position which corresponds to Bayer pattern R(or B)

\(\zeta = \{(r-1,s), (r,s-1), (r,s+1), (r+1,s)\}\)
Update of the R and B components estimated during CFA interpolation

- First, updating R components on Bayer pattern B location and B component on Bayer pattern R location with previous updated G

\[x_{(r,s)k} = x_{(r,s)2} \sum_{(i,j) \in \zeta} w_{(i,j)} \left\{ x_{(i,j)k} / x_{(i,j)2} \right\} \]

- Second, updating remaining locations with estimated R or B component
1. Original CFA components filled into the zoomed CFA image according to (2), as shown in Fig. 3a.
2. Interpolate the missing G component according to (3) with \(\zeta = \{(r - 2, s), (r, s - 2), (r, s + 2), (r + 2, s)\} \) (Fig. 3a)
3. Interpolate the missing G component according to (3) with \(\zeta = \{(r - 1, s - 1), (r - 1, s + 1), (r + 1, s - 1), (r + 1, s + 1)\} \) (Fig. 3b)
4. Interpolate the missing R and B components using (6) and (7), respectively, with \(\zeta = \{(r - 2, s - 2), (r - 2, s + 2), (r + 2, s - 2), (r + 2, s + 2)\} \) (Fig. 3c and Fig. 3e)
5. Interpolate the missing R and B components using (6) and (7), respectively, with \(\zeta = \{(r - 2, s), (r, s - 2), (r, s + 2), (r + 2, s)\} \) (Fig. 3d and Fig. 3f)
6. Interpolate the missing G component according to (3) with \(\zeta = \{(r - 1, s), (r, s - 1), (r, s + 1), (r + 1, s)\} \) (Fig. 3h)
7. Interpolate the missing R and B components using (8) with \(\zeta = \{(r - 1, s - 1), (r - 1, s + 1), (r + 1, s - 1), (r + 1, s + 1)\} \) (Fig. 3i and Fig. 3j)
8. Interpolate the missing R and B components using (8) with \(\zeta = \{(r - 1, s), (r, s - 1), (r, s + 1), (r + 1, s)\} \) (Fig. 3k and Fig. 3l)
9. Correct the interpolated G component according to (9) with \(\zeta = \{(r - 1, s), (r, s - 1), (r, s + 1), (r + 1, s)\} \) (Fig. 3h)
10. Correct the interpolated R and B components using (8) with \(\zeta = \{(r - 1, s - 1), (r - 1, s + 1), (r + 1, s - 1), (r + 1, s + 1)\} \) (Fig. 3i and Fig. 3j)
11. Correct the interpolated R and B components using (8) with \(\zeta = \{(r - 1, s), (r, s - 1), (r, s + 1), (r + 1, s)\} \) (Fig. 3k and Fig. 3l)

A \(K_1 \times K_2 \) enlarged, full color camera output \(x(l) \)
Test image is captured using three-sensors cameras or color scanner

Bayer pattern

- The original color image ($\lambda K_1 \times \lambda K_2$) is down-sampled to $K_1 \times K_2$ and sampled with Bayer pattern to obtain the test pattern.
Conventional method

- CIZ: bilinear CFA interpolation followed by bilinear image zooming in the RGB color domain
- LZ: CFA zooming followed by bilinear CFA interpolation
- CDES: color-difference edge-sensing CFA zooming

Evaluation

- MAD (mean absolute error), MSE (mean square error), NCD (normalized color difference criterion)
Objective evaluation

TABLE I
Comparison of the methods using the test image Mountains

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>10.939</td>
<td>317.0</td>
<td>0.1701</td>
</tr>
<tr>
<td>LZ</td>
<td>11.688</td>
<td>362.7</td>
<td>0.1849</td>
</tr>
<tr>
<td>CDES</td>
<td>10.478</td>
<td>283.2</td>
<td>0.1879</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>10.276</td>
<td>264.2</td>
<td>0.1681</td>
</tr>
</tbody>
</table>

TABLE II
Comparison of the methods using the test image Window

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>7.233</td>
<td>155.2</td>
<td>0.0703</td>
</tr>
<tr>
<td>LZ</td>
<td>8.288</td>
<td>204.1</td>
<td>0.0908</td>
</tr>
<tr>
<td>CDES</td>
<td>6.149</td>
<td>113.4</td>
<td>0.0805</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>5.982</td>
<td>104.1</td>
<td>0.0675</td>
</tr>
</tbody>
</table>

TABLE III
Comparison of the methods using the test image Girls

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>5.839</td>
<td>132.4</td>
<td>0.0730</td>
</tr>
<tr>
<td>LZ</td>
<td>6.923</td>
<td>183.2</td>
<td>0.0903</td>
</tr>
<tr>
<td>CDES</td>
<td>5.074</td>
<td>100.9</td>
<td>0.0815</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>5.191</td>
<td>96.1</td>
<td>0.0764</td>
</tr>
</tbody>
</table>

TABLE IV
Comparison of the methods using the test image Mask

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>16.344</td>
<td>623.5</td>
<td>0.1669</td>
</tr>
<tr>
<td>LZ</td>
<td>17.736</td>
<td>737.2</td>
<td>0.1879</td>
</tr>
<tr>
<td>CDES</td>
<td>14.499</td>
<td>513.6</td>
<td>0.1768</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>14.050</td>
<td>463.9</td>
<td>0.1449</td>
</tr>
</tbody>
</table>

TABLE V
Comparison of the methods using the test image Lighthouse

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>9.516</td>
<td>318.7</td>
<td>0.0762</td>
</tr>
<tr>
<td>LZ</td>
<td>10.143</td>
<td>362.9</td>
<td>0.0850</td>
</tr>
<tr>
<td>CDES</td>
<td>9.118</td>
<td>300.2</td>
<td>0.0674</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>9.008</td>
<td>284.8</td>
<td>0.0578</td>
</tr>
</tbody>
</table>

TABLE VI
Comparison of the methods using the test image Parrots

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MSE</th>
<th>NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZ</td>
<td>4.983</td>
<td>127.6</td>
<td>0.0374</td>
</tr>
<tr>
<td>LZ</td>
<td>5.819</td>
<td>158.9</td>
<td>0.0481</td>
</tr>
<tr>
<td>CDES</td>
<td>4.608</td>
<td>104.4</td>
<td>0.0413</td>
</tr>
<tr>
<td>Proposed unified scheme</td>
<td>4.579</td>
<td>93.2</td>
<td>0.0371</td>
</tr>
</tbody>
</table>
Subjective evaluation

- Sharper details and reduction of artifacts present along high-contrast edges
(a) Original image

(b) CIZ scheme

(c) LZ scheme

(d) CDES scheme

(e) Proposed scheme
Conclusion

- A unified camera image processing system that performs zooming and full color image reconstruction on Bayer pattern image
 - Utilizing a small number of low-complexity operation for efficient hardware implementation
 - Achieving high quality output without amplification of distracting artifacts