Oblique lattice systems and its application to design halftone masks

Journal of Electronic Imaging, vol. 14, no. 3, Jul.-Sep. 2005

Kanya Ishizaka

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

- Proposal of this papers
 - Integral lattice-based halftone masks by the OLS
- Oblique lattice system (OLS)
 - Good mathematical treatments of lattice
 - Implement
 - To realize the local and global numberings concept
 - To know conditions of halftone mask
 - Realization of mask size, resolution, line angle, etc.
Introduction

- Holladay’s method
 - Deal with the lattice structures of clustered dot mask
 - 4 Flaws
 (1) Difficulty to realize the required line angle
 - Supercell technique
 (2) Low resolution or low total tones
 - Multicenter dot technique
 (3) Noise or irregularity of dot shapes and textured patterns
 - Blue noise interpolation technique
 (4) Difficulty in realizing the required mask size
 - No appreciate approach
Definition 2.1

- Two parallel lines in rectangular
 \[y_1hx - x_1wy = wzh_1(z_1 \in Z) \] \hspace{1cm} (1)
 \[x_2hx + y_2wy = wzh_2(z_2 \in Z) \] \hspace{1cm} (2)

 - \(R, Z, N \) are real, integral and natural numbers
 - \(w, h \in R \) with \(w, h > 0 \)
 - \(x_1, x_2, y_1, y_2 \in Z \) with \(x_1x_2 + y_1y_2 \neq 0 \)
 - Let \(\Lambda = |x_1x_2 + y_1y_2| \)

- Expression
 - \(\Lambda[(w,h),(x_1,y_1),(x_2,y_2)] \) or \(\Lambda \)
◆ Geometric explanation of OLS

- Procedure with the case, $|x_1| \geq |y_1| \geq 0$
 - Diving both side with $|x_1|$ pieces
 - Setting both $|x_1| - 1$ dividing points
 - Connecting lower left corner point and the $|y_1|$th dividing point from the upper corner point with $x_1 y_1 \geq 0$
 - Placing all lines from left to right points

- Procedure with the case, $|y_1| \geq |x_1| \geq 0$
 - Interchange $|x_1|$ and $|y_1|$
 - Interchange left and right with lover and upper edges
– Example of OLS $\Lambda[(128,128), (2,8), (2,12)]$

Fig 1. OLS $\Lambda[(128,128), (2,8), (2,12)]$
◆ Properties of OLS

1. \(\theta_1 = \tan^{-1}\left(\frac{h v_1}{w x_1}\right) \), \(\theta_2 = -\tan^{-1}\left(\frac{h x_2}{w y_2}\right) \).

2. \(\theta = \begin{cases}
\tan^{-1}\left[\frac{w h (x_1 x_2 + y_1 y_2)}{w x_1 y_2 - h x_2 y_1}\right] & w x_1 y_2 - h x_2 y_1 \neq 0, \\
\pi/2 & w x_1 y_2 - h x_2 y_1 = 0.
\end{cases} \)

3. \(l_1 = \frac{w h}{(w^2 x_1^2 + h^2 y_1^2)^{1/2}} \), \(l_2 = \frac{w h}{(h^2 x_2^2 + w^2 y_2^2)^{1/2}} \).

4. Tile by a periodic square

5. Expression of position \((x, y)\)

\[a_1 v_1 + a_2 v_2 \]

where \(a_1 \in R, a_2 \in Z, \) or \(a_1 \in Z, a_2 \in R \), and

\[v_1 = \left(\frac{w x_1}{d n}, \frac{h y_1}{d n}\right), v_2 = \left(\frac{w y_2}{d n}, -\frac{h x_2}{d n}\right). \]
6. Total number of lattice : \(dn \)

7. All lattice points of \(\Lambda \)
\[
a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + (w, h) \left[\text{mod}(w, h) \right] \begin{cases}
 a_1 = 0, \ldots, dn / d - 1 \\
 a_2 = 0, \ldots, d - 1
\end{cases}
\]

where \(\text{mod}(w, h) \) means taking each \(x, y \) component’s modulo by \(w, h \) in turn, and \(d \in \mathbb{N} \) is the greatest common divisor of \(|x| \) and \(|y| \).

8. Equal OLSs
\[
\Lambda[(w, h), (\pm x_1, \pm y_1), (\pm x_2, \pm y_2)], \\
\Lambda[(w, h), (\pm y_1, \mp x_1), (\pm y_2, \mp x_2)]
\]

9. Having same lattices points of OLSs
\[
\Lambda[(w, h), (ix_1 + jy_2, -jx_2 + iy_1), (kx_2 + ly_1, -lx_1 + ky_2)],
\]

where each \(i, j, k, \) and \(l \) is in \(\mathbb{Z} \) with \(|ik + jl| = 1 \).
10. Same lattice structure

\[\Lambda[(w 2^{p_1}, h 2^{p_2}), (x_1 2^{p_2}, y_1 2^{p_1}), (x_2 2^{p_1}, y_2 2^{p_2})], \]

where \(p_1, p_2 \in \mathbb{Z} \) with each \(x_1 2^{p_2}, y_1 2^{p_1}, x_2 2^{p_1}, y_2 2^{p_2} \in \mathbb{Z} \).

◆ Definition 2.3

– Subdivided OLS of \(\Lambda \):

\[\Lambda[(w, h), (x_1 - y_2, x_2 + y_1), (x_2 - y_1, x_1 + y_2)] \]

– Superdivided OLS of \(\Lambda \):

\[\Lambda[(w, h), ((x_1 - y_2) / 2, (x_2 + y_1) / 2), ((x_2 - y_1)2, (x_1 + y_2) / 2)] \]

iif four fractional numbers are all integers.

Fig 3. OLS \(\Lambda[(w, w), (4,1), (5,2)] \) and its subdivision and superdivision
Proposition 2.4

- n (natural number) times superdivided OLS of Λ with even n
 \[
 \Lambda[(w, h), (x_1/2^{n/2}, y_1/2^{n/2}), (x_2/2^{n/2}, y_2/2^{n/2})]
 \]
 if each x_1, y_1, x_2, and y_2 can be divided by $2^{n/2}$ into an integral number.

- n times superdivided OLS of with odd n
 \[
 \Lambda[(w, h), ((x_1 - y_2)/2^{(n+1)/2}, (x_2 + y_1)/2^{(n+1)/2}), ((x_2 - y_1)/2^{(n+1)/2}, (x_1 + y_2)/2^{(n+1)/2})]
 \]
 if each $x_1 - y_2$, $x_2 + y_1$, $x_2 - y_1$, and $x_1 + y_2$ can be divided by $2^{(n+1)/2}$ into an integral number.
Design of halftone masks by OLSs

- Uniform balanced numbering concept and its decomposition
 - Use fixed mask size \((w \times h)\) to overcome flaw(4)
 - Apply common conception to all halftone masks
 - Common concept
 - “the consecutive numbering 0,\ldots,wh – 1 so that the numbering is done by preserving uniform balance in whole of the mask of size \(w \times h\)
 - Determine the number of tones of halftone masks \((0,\ldots,\text{cols})\) from the consecutive numbers \((0,\ldots,wh – 1)\)
– Equation of halftone mask from common concept

\[p_c[u(i)] = \begin{cases} i = 0, \ldots, wh-1 \\
\end{cases} \]

where \(u(i) \) means the uniquely determined pixel in \(w \times h \), and \(p_c \) gives the consecutive numbering value 0,..., \(wh-1 \) with uniform balance

– Decomposition

\[p_c[u(i)] = p_c[u(j,k)] = \begin{cases} j = 0, \ldots, dn-1, \ k = 0,\ldots, cl-1 \\
\end{cases} \]

where \(u(j,k) \) is uniquely redetermined for \(j \) and \(k \), \(dn \) is the number of clusters in the mask, and \(cl(j) = wh / dn \) is the number of pixels in the \(j \)'th cluster with \(\sum_{j=0}^{dn-1} cl(j) = wh \)

• Core pixels of clusters : \(u(j,0) \)
• Pixels in the \(j \)'th cluster : \(u(j,k) \)
• lattice-based masks and stochastic clustered dot type masks from the numbering
– Perfect form of decomposition

• Place each core pixel on an integral lattice point

\[p_c[u(i)] = p_c[u(j,0)] + p_c[u(0,k)] \quad j = 0, \ldots, dn - 1, \quad k = 0, \ldots, cl - 1 \]

where \(p_l \) gives the local numbering value \(0, \ldots, \text{wh} / dn - 1 \), and \(p_g \) gives the global numbering value \(0, \ldots, dn - 1 \) with uniform balance.

• Regular on each cluster by local numbering and irregular on lattice pixels by global numbering
◆ Design algorithm by integral OLSs with the local and global numberings concept
 – Solution of the 4 flaws
 • Many combination of angle in the OLS
 • Independence of the resolution and the total tone from the consecutive numbering
 • Global numbering with stochastic property to prevent regular textured pattern
 • Possibility of the resolution size at first
– Algorithm A (the consecutive numbering algorithm)

1. Set $w \times h$ mask and the number of lattices dn corresponding the lattice points

2. Set the cluster of pixels by the same shape which consist of wh/dn pixels

3. Local numbering for $p_l[u(0,k)]$

4. Global numbering for $p_g[u(j,0)]$

5. Set the consecutive numbering for $p_c[u(j,k)]$

6. Arrange the number $(0, ..., wh - 1)$ to the total tone number $(0, ..., cols - 1)$ evenly
– Algorithm B (constraint of stochastic property)

• \(w \times h \) mask size for \(d_w \times d_h \) dpi

• Let \(P \) be a selectable (lattice points) and \(Q \) be a selected pixel set

• Let \(r \) be a real number: \(r < \frac{1}{2} \frac{w}{d_w}, \quad r < \frac{1}{2} \frac{h}{d_h} \)

• Let \(f : R \rightarrow R \) be function to measure the watching pixel’s density with the range \([1,0]\) and \(f(x) = 0(x > 1) \)

\[
\sum_{x \in Q} f\left[\frac{d(x, y)}{r} \right]
\]

where \(d(x, y) \) be a distance from \(y \in P \) to \(x \in Q \)

\[
f(x) = \begin{cases}
(2/3 - x + 1/3x^3)^2 & x \leq 1 \\
0 & x > 1
\end{cases}
\]
• Select pixels from P with adding to Q in order that a pixel with lower density is selected faster
Control of the global numbering

- Use superdivided OLS for stochastic irregular patterns and regular textured patterns
- Let $v_1(i)$ and $v_2(i)$ be i times superdivided for under n times superdivided $1 \leq i \leq n$
- Procedure of re-sort $u(j,0)$
 1. Let $u(j,0)$ for $j = 0, \ldots, dn/2^n - 1$
 2. Let $i = n$
 3. Let $u(j,0) = u(j - dn/2^i,0) + [v_1(i) + v_2(i)]/2 + (w, h)[\text{mod}(w, h)]$
 for $j = dn/2^i, \ldots, dn/2^{i-1} - 1$
 4. $i = i - 1$ and repeat (2)-(4) until $i \geq 1$
- Result equation
 $$p_g[u(j,0)] = p_g[u(j \mod dn/2^n,0)] + (dn/2^n) \text{int}[j/(dn/2^n)]$$
 where int means the round down operation to integers.
Homogeneous type masks

Definition 3.1 (Uniform and Homogeneous OLS)

• Assumption
 – Λ be an integral OLS
 – $cols \in N$ be the total tone number and
 – $ds = \frac{wh}{cols} \in R$ be the number of pixels assigned to one tone

• Necessity for uniform OLS
 – Integral number of ds

• Necessity for homogeneous OLS
 – Existence of integral number, $p \geq 0$
 – Satisfaction $\frac{dn}{ds} = \frac{dn \cdot cols}{(wh)} = 2^p$
 – Possibility p times superdivision of Λ

– Integral OLS \supset uniform OLS \supset homogeneous OLS
Corollary 3.2
- uniform OLS \supseteq homogeneous OLS

Corollary 3.3 (Condition for homogeneous OLS)
- Necessity for homogeneous OLS Λ with $cols = (wh / dn)2^p$
 1. p is even and x_1, x_2, y_1, y_2 can be divided by $2^{p/2} = (dn / ds)^{1/2}$ into integral numbers.
 2. p is odd and $x_1 - y_2, x_2 + y_1, x_2 - y_1$, and $x_1 + y_2$ can be divided by $2^{(p+1)/2} = (2dn / ds)^{1/2}$ into integral numbers

- Example
 - $\Lambda[(64,64),(16,8),(12,8)]$ with $cols = 256 \rightarrow ds = 16, p = 4$
 - $\Lambda[(32,32),(16,8),(12,8)]$ with $cols = 256 \rightarrow ds = 4, p = 6$
 - $\Lambda[(32,32),(16,8),(12,8)]$ with $cols = 200 \rightarrow ds = 5.12$
Corollary 4.1

1. Line angles \(\tan^{-1}\left(\frac{d_w h y_1}{d_h w x_1}\right) \), \(-\tan^{-1}\left(\frac{d_w h x_2}{d_h w y_2}\right) \).

2. Narrower angle between two line

\[
\begin{cases}
\tan^{-1}\left[\frac{wh(x_1 x_2 + y_1 y_2)}{d_h w x_1 y_2 - d_w h x_1 y_2} \right] & \text{if } d_h w x_1 y_2 - d_w h x_1 y_2 \neq 0 \\pi/2 & \text{if } d_h w x_1 y_2 - d_w h x_1 y_2 = 0
\end{cases}
\]

3. Line resolution [lines/inch (=lpi)]

\[\left(\frac{d_h^2 w^2 x_1^2 + d_w^2 h^2 y_1^2}{wh}\right)^{1/2}, \left(\frac{d_h^2 w^2 x_2^2 + d_w^2 h^2 y_2^2}{wh}\right)^{1/2}\]

4. Corresponding resolution (lines/in.)

\[\sqrt{\frac{d_h d_w |x_1 x_2 + y_1 y_2|}{wh}}\]
Example 4.2

- 256 tone mask of 64×64 pixels for 600 dpi from OLS $\Lambda[(64,64), (16,8), (12,8)]$

- Result of equation before presented
 1. Mask size: 64×64 pixels
 2. The numbers of lattice points of $\Lambda: dn = 256$
 3. the basis of $\Lambda: \{(4,2), (2,-3)\}$
 4. Two line angles: $\tan^{-1}(1/2), -\tan^{-1}(3/2)$
 5. Two line resolutions: 168, 135 lpi
 6. Corresponding resolution: 150 lpi
 7. The number of total tones: $cols = 256$
 8. The amount of pixels for one tone: $ds = 16$
– Procedure

1. set the size of mask

2. Choose a cluster of pixels and local numbering p_i from 0 to $wh/dn−1=15$

(a) line-shaped growth

(b) dot-shaped growth

Fig 4. Lattice pixels of a 64 x 64 size mask assigned by $\Lambda[(64,64),(16,8),(12,8)]$

Fig 5. Samples of local numbering
• Practical procedure of local numbering
 – Choose 50% \(\frac{wh}{2dn} - 1 = 7 \), and then number all

![Diagram with numbering examples]

3. Determine \(p_g \) from 0 to \(dn - 1 = 255 \) for each lattice pixel uniquely and superdivided 4 times
 - Original \(\Lambda[(64,64),(16,8),(12,8)] \)
 - First superdivision \(\Lambda[(64,64),(4,10),(2,12)] \)
 - Second superdivision \(\Lambda[(64,64),(8,4),(6,4)] \)
 - Third superdivision \(\Lambda[(64,64),(2,5),(1,6)] \)
 - Fourth superdivision \(\Lambda[(64,64),(4,2),(3,2)] \)

Fig 6. Samples of line-shaped local numbering
Fig 7. Samples of the pair structure of superdivided lattice of $\Lambda[(64,64), (16,8), (12,8)]$

(a) 2nd
(b) 1st
(c) Paired 2nd

Fig 8. Samples of the global numbering by 16 for lattice point of OLS $\Lambda[(64,64), (16,8), (12,8)]$

(a) with all superdivided lattices
(b) with no superdivided lattices
(c) with 1st superdivided lattices between (a) and (b)
4. Let consecutive number be \(p_c = p_d n + p_g \), so that each pixel is numbered from 0 to 4095.

5. Rearrange the number from 0 to \(wh - 1 \), to from 0 to \(cols - 1 \) and renumber \(256n \) to \(256(n+1) \), for \(n = 0, ..., 255 \).
Fig 9. Mask patterns achieved by OLS \(\Lambda[(64,64),(16,8),(12,8)] \) (printed at 200 dpi)

(a) homogeneous type (with all superdivided lattices)

(b) stochastic type (with no superdivided lattices)
Example 4.3

- 256 tones mask of 16×16 pixels for 600 dpi
- Orthogonal type of OLSs
 - $\Lambda[(16,16),(8,8),(8,8)]: 424\text{ lpi}, 45 \text{ deg}$
 - $\Lambda[(16,16),(4,4),(4,4)]: 212\text{ lpi}, 45 \text{ deg}$
 - $\Lambda[(16,16),(2,2),(2,2)]: 106\text{ lpi}, 45 \text{ deg}$
 - $\Lambda[(16,16),(4,0),(4,0)]: 150\text{ lpi}, 0 \text{ deg}$
Fig 10. Mask patterns by two OLSs (printed at 200 dpi).

(a) homogeneous type by $\Lambda[(64,64),(4,4),(4,4)]$

(a) mask using 1st superdivided OLS of $\Lambda[(64,64),(16,8),(12,8)]$
Fig 11. Natural images samples (printed at 600 dpi)

(a) error diffusion
(b) void-and-cluster mask (64 x 64)
(c) homogeneous type mask by Λ[(64,64), (4,4), (4,4)]
(d) mask using 1st superdivided OLS of Λ[(64,64), (16,8), (12,8)]
Some remarks

◆ Relation to the Holladay’s construction
 – Get the Holladay’s construction from any integral OLSs
 • Calculate the min size OLS with the same basis
 • Construct a homogeneous type mask with total tone number of
 \[cols = \frac{wh}{dn} \]

◆ Inverse computations of OLSs
 – To require integral OLSs that realize a required condition
 – Procedure
 • Set the mask size \((w, h)\) and by changing \(x_1, y_1, x_2, \) and \(y_2\)
 • Check OLS integral and corresponding resolution in \([r_i, r_h]\)
 where \(r_i\) and \(r_h\) are the required lover and upper resolution
 • Check two line resolution and line angle
Suitable conditions for stochastic global numbering

- Prevent the irregular periodic patterns
 - Select mask size large
 - Select not very high resolution
- Proper mask size
 - Larger than 32×32 and around 150 lpi resolution

For color printing

- Aim to avoid moire artifacts
- Method 1: Select some OLSs which have the same lattice pixels

 $C \Lambda[(64,64), (16,8), (12,8)]: 168$ lpi, 26.5 deg

 $M \Lambda[(64,64), (16,−8), (12,−8)]: 168$ lpi, −26.5 deg

 $Y \Lambda[(64,64), (16,8), (20,−8)]: 202$ lpi, 68.0 deg

 $K \Lambda[(64,64), (16,−8), (20,8)]: 202$ lpi, −68 deg
- Second method: Sliding all pixels

 \[
 C \Lambda[(64,64), (10,4), (12,2)]: 201\text{lp}i, 21\text{deg}

 M \Lambda[(64,64), (10, -4), (12, -2)]: 201\text{lp}i, -21\text{deg}

 Y \Lambda[(64,64), (8,8), (10,6)]: 218\text{lp}i, -60\text{deg}

 K \Lambda[(64,64), (8,-8), (10, -6)]: 218\text{lp}i, 60\text{deg}
 \]

- Additional benefits by OLSs

 - Combination of angel and resolution in mask size
 - Control the number of total tones (cols) with tone reproduction control (TRC) correction
Conclusion

◆ Proposal
 – Simple algorithm for halftone masks by OLS that realize the concept of uniform balanced numbering
 – Global numbering by superdivided lattices

◆ Properties
 – Imposing regularity of clusters by local numbering
 – Imposing irregularity of dot lighting by local numbering with stochastic property