Illuminant and device invariant color using histogram equalization

Pattern Recognition, vol. 38, no. 2, Feb. 2005
Graham Finlayson, Steven Hordley, Gerald Schaefer, and Gui Yun Tian

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

- Necessity of the *color invariant image representation*
 - Color can provide useful information for computer vision such as image retrieval, object recognition
 - Color must be independent of imaging condition such as scene illumination and imaging device

- A new color invariant image representation *based on the histogram equalization*
 - Presenting the empirical evidence that *rank ordering of sensor responses are preserved across a change in imaging condition*
 -> histogram equalization of each channel of a color image is invariant
 - Applying the method to an image indexing application
1. Introduction

- Color images (RGB)
 - Providing useful information to help in solving a wide range of computer vision
 - Image retrieval, image segmentation, object tracking
 - Assuming that color recorded by devices are an inherent property of the imaged objects

- Two kinds of dependence of color images
 - Illumination dependent
 - Device dependent
Method to account for illumination dependence

- Color invariant
 - Seeking transformations of the image data such that the transformed data are illuminant independent
 - More practical success than color constancy

- Color constancy
 - Determining an estimate of the light illuminating a scene and providing this estimate to subsequent vision algorithm
 - A more powerful solution to illumination dependence than color invariant
Addressing the limitations of existing color constancy and color invariant

- A new representation which is both illumination independent and device independent
 - Observing that the rank orderings of responses of a given are largely preserved
 - Revealing that the preservation of rank ordering holds both across a wide range of illuminants and a variety of imaging devices
 - Proposing the invariant representation using histogram equalization
Organization of this paper

- Showing how recorded responses depend on illuminant and device
- Describing a number of existing color invariants
- Presenting an empirical proof that rank orderings of sensor responses are invariant across a wide range of illuminants and device
- Proposing the invariant representation using the histogram equalization and demonstrating the utility of the technique
2. Background

Simple model of image formation

- Device response depends both on properties of sensor \(Q_k(\lambda) \) and prevailing illumination \(E_k(\lambda) \)

$$q_k = \int_{\omega} E(\lambda)S(\lambda)Q_k(\lambda)d\lambda, \quad k = 1,\ldots,m$$ \hspace{1cm} (1)

\(E(\lambda) \): spectral power distribution
\(S(\lambda) \): surface reflectance
\(Q_k(\lambda) \): spectral sensitivity function of the \(k \)th sensor
Image representation invariant to illuminant

- Chromaticity vector invariant to a change in intensity of an illuminant

\[r = \frac{R}{R + G + B}, \quad g = \frac{G}{R + G + B}, \quad b = \frac{B}{R + G + B} \] \hspace{1cm} (2)

- Simple illuminant invariant representation (diagonal model)

\[R' = \frac{R}{R_{ave}}, \quad G' = \frac{G}{G_{ave}}, \quad B' = \frac{B}{B_{ave}} \] \hspace{1cm} (3)

- Two common failings of existing invariant representation
 - Poor performance
 - Not consideration of the device invariance
Variation of response across device

- The properties of the three sensors of a device

 \[q_k = \int_{\omega} E(\lambda) S(\lambda) Q_k(\lambda) d\lambda, \quad k = 1, \ldots, m \]

- Nonlinear transformation known as the gamma of the monitor

 \[q_k = \int_{\omega} E(\lambda) S(\lambda) Q_k(\lambda) d\lambda, \quad k = 1, \ldots, m \]

- Tone curve correction to create a visually pleasing image
3. Rank invariance of sensor responses

- Rank invariance under a change of illumination
 - Under assumption of a diagonal model of illumination change
 \[R_i^c = \alpha R_i^o \]
 \[R_i^o : \text{response of a single sensor to a surface 'i' under an illuminant 'o'} \]
 \[R_i^c : \text{response of a single sensor to a surface 'i' under an illuminant 'c'} \]
 \[R_i^o > R_j^o \Rightarrow \alpha R_i^o > \alpha R_j^o \Rightarrow R_i^c < R_j^c \]

- Rank invariance to nonlinear function
 - Nonlinear function is monotonic
 \[R_i > R_j \Rightarrow (R_i)^\gamma > (R_j)^\gamma \]
3-1. Rank invariance in practice

Further investigation of the rank invariance across changes in both illumination and device

- **Case 1**: a single device under changing illumination
 - `Rank()`: taking the vector argument and returning a vector whose elements contain the rank of the corresponding element in the argument

\[
rank(P_k^1) = rank(P_k^2)
\]

\[
P_k^1 = \int E^1(\lambda) R_k(\lambda) S(\lambda), \quad P_k^2 = \int E^2(\lambda) R_k(\lambda) S(\lambda)
\]

Different illuminant
Case 2: Invariance of rank ordering across devices

\[\text{rank}(P_k^1) = \text{rank}(Q_k^1) \]

\[P_k^1 = \int E^1(\lambda)R_k^1(\lambda)S(\lambda), \quad Q_k^1 = \int E^1(\lambda)R_k^2(\lambda)S(\lambda) \]

Different devices

Assessment of the rank using Spearman’s rank correlation coefficient

\[\rho = 1 - 6\sum_{j=1}^{N} \frac{d_j^2}{N_s (N_s^2 - 1)}, \quad -1 < \rho < 1 \]

where \(N_s \): number of surfaces
\(d_j = \) difference between the \(j \)-th elements of \(\text{rank}(P_k^1) \) and \(\text{rank}(P_k^2) \)
Experiment and analysis for a variety of image devices and illuminants

- A set of 462 Munsell chips to represent a wide range of reflectances
- 16 different lights
 - Daylight, fluorescent, Planckian blackbody radiators
- Four digital camera, a flatbed scanner, color matching function

Fig. 1. Example of sensitivity functions for the long-wavelength
Results

Fig. 2. Correlation plot of long-wave Sensor responses to a set of surfaces Viewed under two different lights

Table 1. Spearman’s rank correlation coefficient

<table>
<thead>
<tr>
<th>Change in illuminant</th>
<th>Long-wave sensor</th>
<th>Medium-wave sensor</th>
<th>Short-wave sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Across illumination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour matching</td>
<td>0.9957</td>
<td>0.9922</td>
<td>0.9992</td>
</tr>
<tr>
<td>functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera 1</td>
<td>0.9983</td>
<td>0.9984</td>
<td>0.9974</td>
</tr>
<tr>
<td>Camera 2</td>
<td>0.9978</td>
<td>0.9938</td>
<td>0.9933</td>
</tr>
<tr>
<td>Camera 3</td>
<td>0.9979</td>
<td>0.9984</td>
<td>0.9972</td>
</tr>
<tr>
<td>Camera 4</td>
<td>0.9981</td>
<td>0.9991</td>
<td>0.9994</td>
</tr>
<tr>
<td>Scanner</td>
<td>0.9975</td>
<td>0.9989</td>
<td>0.9995</td>
</tr>
<tr>
<td>Across devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylight (D65)</td>
<td>0.9877</td>
<td>0.9934</td>
<td>0.9831</td>
</tr>
<tr>
<td>Fluorescent (cwf)</td>
<td>0.9931</td>
<td>0.9900</td>
<td>0.9710</td>
</tr>
<tr>
<td>Tungsten (A)</td>
<td>0.9936</td>
<td>0.9814</td>
<td>0.9640</td>
</tr>
<tr>
<td>Across device and illuminant</td>
<td>0.9901</td>
<td>0.9886</td>
<td>0.9774</td>
</tr>
</tbody>
</table>

Rows 1–6 show results for each sensor (R, G, and B) of a range of devices. Results are averaged over all pairs of a set of 16 illuminants. Rows 7–9 show results averaged over all devices for three different illuminants. Row 10 shows results averaged over six devices and 16 illuminants.
3-2. Rank invariance of image

- Equivalence class of images with respect to I
 - I^1 is equivalent to I^2 if the following is true: $\text{rank}(P_k^1) = \text{rank}(P_k^2)$
 - In other words, rank ordering of I^1 is same as I^2

$$\mathcal{I} = \{I^j | \text{rank}(P_k^j) = \text{rank}(P_k), \ k = 1, 2, 3\}. \quad (12)$$

- Rank invariance of image is achieved by determining whether or not two images belong to the same equivalence class
4. Histogram equalization for color invariance

- Cumulative invariance
 - Assuming that the illumination change preserves rank ordering of pixels
 \[
 P(R^c < R_i^c) = P(R^o < R_i^o) \quad : \quad R^o \in [0...R_{max}]
 \]
 \[
 P(R^c < R_i^c): \text{number of pixels in an image with a value less than or equal to } R_i^o
 \]

- A new image representation using histogram equalization
 - Transforming the image that the resulting image histogram is uniform

\[
R_i^{inv} = \frac{R_{max}}{N_{pix}} P(R^o \leq R_i^o) \quad \quad G_i^{inv} = \frac{G_{max}}{N_{pix}} P(G^o \leq G_i^o) \quad \quad B_i^{inv} = \frac{B_{max}}{N_{pix}} P(R^o \leq R_i^o)
\]

where \(N_{pix}: \text{number of pixels}\)
The effect of applying the histogram equalization

- First row shows three images of the same scene, captured by the same camera under three different illuminant.
- Second row shows the resulted images.
The effect of applying the histogram equalization

- First two column: captured images with different devices
- Second two column: histogram equalized images
5. An application to color indexing

- Applying this method to an image retrieval task
 - Database image
 - 28 different color textures captured under six different device (four camera and two scanner) and three different lights
 - Three different conditions
 - Change in illumination
 - Change in device
 - Change of both device and illumination
Experimental procedure

- Choosing a set of 28 images all captured under the same condition to be image database
- Selecting from the remaining set of images a subset of appropriate query images
- Deriving the invariant image for all database and query image
- Representing the invariant image by color distribution (histogram)
- Performing the indexing by comparing its histogram
Block of the experimental procedure

Image invariant

Histogram intersection method

\[\sum_{i,j} \min[H_1(i, j), H_2(i, j)] \]

\[\sum_{i,j} H_1(i, j) \]

where \(H_1 \) and \(H_2 \) : histogram

Database
Indexing performance

Matching percentile (MP)

The matching percentile (MP) is defined as:

$$\gamma = \frac{N_{\text{model}} - \text{rank}}{N_{\text{model}} - 1}, \quad 0 \leq \gamma \leq 1$$

- $\gamma = 1 \rightarrow$ image was correctly matched
- $\gamma = 0 \rightarrow$ correct image was in last place

where N_{model} is the number of database images, and rank is the position of the correct histogram in a sorted list of histogram intersection scores.

AMP

Multiply the MP by 100 and averaging over all matched images.
Results

Table 2. Result of indexing experiment over a change in illuminant

<table>
<thead>
<tr>
<th>Colour model</th>
<th>Camera 1</th>
<th>Camera 2</th>
<th>Camera 3</th>
<th>Camera 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greyworld</td>
<td>96.23</td>
<td>81.59</td>
<td>99.12</td>
<td>98.90</td>
</tr>
<tr>
<td>Hist. eq.</td>
<td>99.25</td>
<td>92.35</td>
<td>96.91</td>
<td>98.37</td>
</tr>
</tbody>
</table>

Table 3. Result of indexing experiment over a change of camera

<table>
<thead>
<tr>
<th>Colour model</th>
<th>Camera 1</th>
<th>Camera 2</th>
<th>Camera 3</th>
<th>Camera 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greyworld</td>
<td>95.81</td>
<td>89.92</td>
<td>93.67</td>
<td>97.50</td>
</tr>
<tr>
<td>Hist. eq.</td>
<td>98.16</td>
<td>92.34</td>
<td>93.62</td>
<td>98.99</td>
</tr>
</tbody>
</table>

Table 4. Result of indexing experiment over a change of device and illuminant

<table>
<thead>
<tr>
<th>Colour model</th>
<th>Cameras</th>
<th>Scanners</th>
<th>All devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greyworld</td>
<td>92.77</td>
<td>89.36</td>
<td>92.28</td>
</tr>
<tr>
<td>Hist. eq.</td>
<td>94.99</td>
<td>88.48</td>
<td>94.54</td>
</tr>
</tbody>
</table>
6. Discussion

- Outperforming all previous invariant methods
- Giving the excellent performance across changes in illumination
- Investigation for poor performance
 - A number of images captured under tungsten illumination have values of zero in blue channel
 - Scanning process introduces significant non-uniformities