Dynamic Range Compression
Preserving Local Image Contrast
for Digital Video Camera

Yusuke Monobe, Haruo Yamashita,
Toshihary Kurosawa, and Hiroaki Kotera

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

- **Novel dynamic range compression method**
 - Conventional method
 - Using knee curve
 - Designed to preserve a local image contrast
 - Improved contrast of the highlight region

- **Proposed algorithm**
 - Automatically and adaptively enhances the local image contrast in the highlight regions
Introduction

- Dynamic range compression
 - From high dynamic range to low dynamic range
 - Adopted to digital video camera

Fig. 1. Conventional knee curve and auto knee curve
◆ Characteristics
 – Strongly compresses the highlight range
 – Single tone mapping curve to a whole image
 – Recently proposed method
 • Spatially variant tone mapping algorithm

◆ Proposed algorithm
 – Assume to preserve local contrast
 • If the local contrast at any pixel is not changed, the visual contrast is also preserved
Novel operator for preserving local image contrast

- Visual contrast
 - Depends on the local contrast
 - Propose a novel operator to preserve the local contrast
 - Call this operator LCRT (Local Contrast Range Transform)

Fig. 2. Concept of LCRT
– Total system

Fig. 3. Total system of our proposed algorithm
– Mathematical condition

\[
\frac{g(x, y)}{g_{ave}(x, y)} = \frac{f(x, y)}{f_{ave}(x, y)}
\]

(1)

- Rewritten as follows

\[
G(x, y) - G_{ave}(x, y) = F(x, y) - F_{ave}(x, y)
\]

(2)

where \(G(x, y) : \) logarithmic value of \(g(x, y) \)

- Approximately satisfied

\[
G_{ave}(x, y) \cong P(F_{ave}(x, y))
\]

(3)

- First-order Taylor expansion as follows

\[
P(F_{ave}(x, y)) \cong P(F(x, y)) + \left\{ \frac{dP(F(x, y))}{dF(x, y)} \right\} \cdot (F_{ave}(x, y) - F(x, y))
\]

(4)

\[
G(x, y) = P(F(x, y)) + \left\{ 1 - \frac{dP(F(x, y))}{dF(x, y)} \right\} \cdot (F(x, y) - F_{ave}(x, y))
\]

(5)
Eq. (5) is rewritten to the following equation (see appendix):

$$g(x, y) = p(f(x, y)) \times \left(\frac{f(x, y)}{f_{ave}(x, y)} \right)^\alpha \left[1- \frac{f(x, y)}{p(f(x, y))} \frac{dp(f(x, y))}{df(x, y)} \right]$$

(6)

This equation is known as the tone mapping curve, which automatically enhances local contrast at each luminance level.

The ratio of the input luminance level $f(x, y)$ to the local average $f_{ave}(x, y)$ is unchanged at each pixel.

$$G(x, y) = P(F(x, y)) + \alpha \cdot \left[1- \frac{dP(F(x, y))}{dF(x, y)} \right] \cdot (F(x, y) - F_{ave}(x, y))$$

(7)

Rewritten to the following in the luminance domain:

$$g(x, y) = p(f(x, y)) \times \left(\frac{f(x, y)}{f_{ave}(x, y)} \right)^\alpha \left[1- \frac{f(x, y)}{p(f(x, y))} \frac{dp(f(x, y))}{df(x, y)} \right]$$

(8)
– Gain parameter
 • Preserved local contrast when α is set to 1.0

– Local average $f_{\text{ave}}(x, y)$
 • Spatial averaging filter $A(x, y)$

\[
f_{\text{ave}}(x, y) = \langle A(x, y) \otimes f(x, y) \rangle \tag{9}
\]

 – Gaussian filter

\[
A(x, y) = K \exp\left\{-\frac{(x^2 + y^2)}{\sigma^2}\right\} \tag{10}
\]

\[
\iint A(x, y) \, dx \, dy = 1 \tag{11}
\]
Application of LCRT into digital video camera

- Fundamental tone mapping curve for digital video camera
 - Determined tone mapping curve

Fig. 4. Approximate knee curve
– Tone mapping curve must be continuous

• Using a cubic curve as follows

\[
if (f_c(x, y) < t_c) \\
p_c(f_c(x, y)) = f_c(x, y)
\]

\[
else \\
p_c(f_c(x, y)) = a \cdot f_c(x, y)^3 + b \cdot f_c(x, y)^2 + c \cdot f_c(x, y) + d
\] \hspace{1cm} (12)

where suffix \(c \) : value in the camera gamma domain

\[
p_c(t_c) = at_c^3 + bt_c^2 + ct_c + d = t_c
\] \hspace{1cm} (13)

\[
p_c'(t_c) = 3at_c^2 + 2bt_c + c = 1
\] \hspace{1cm} (14)

\[
p_c(m_c) = am_c^3 + bm_c^2 + cm_c + d = 1
\] \hspace{1cm} (15)

\[
p_c'(m_c) = 3am_c^2 + 2bm_c + c = s_c
\] \hspace{1cm} (16)

where \(m_c \) : maximum input level

\(s_c \) : differential coefficient of the conventional knee curve

at the maximum input value.
\[s_c = \frac{1 - k_c}{m_c - k_c} \] \hspace{1cm} (17)

- **Coefficient \(a, b, c, d\)**

\[
a = \frac{(s_c - 1)t_c + (2 - m_c - m_c s_c)}{(t_c - m_c)^3} \hspace{1cm} (18)
\]

\[
b = \frac{2(1 - s_c)t_c^2 + (m_c s_c + 2m_c - 3)(t_c + m_c)}{(t_c - m_c)^3} \hspace{1cm} (19)
\]

\[
c = \frac{s_c t_c^3 + (s_c - 4)m_c t_c^2 + (6 - m_c - 2m_c s_c)m_c t_c - m_c^3}{(t_c - m_c)^3} \hspace{1cm} (20)
\]

\[
d = \frac{(1 - m_c s_c)t_c^3 + (m_c s_c + 2m_c - 3)m_c t_c^2}{(t_c - m_c)^3} \hspace{1cm} (21)
\]
• Tone mapping curve

Fig. 5. Conventional and approximate knee curve

$$m_c = 2.0$$

$$k_c = 0.9$$

$$t_c > 0.35 :$$ overshoots the conventional knee curve
Application of LCRT to approximate knee curve

- Luminance domain

\[
if (f(x, y)) < t \\
\quad p (f (x, y)) = f (x, y) \\
else \\
\quad p(f(x, y)) = \left\{a \cdot f (x, y)^3 + b \cdot f (x, y)^2 + c \cdot f (x, y) + d\right\}^r
\]

- Luminance of the threshold level \(t = t_c^r \)

\[
if (f(x, y)) < t \\
\quad \frac{dp(f(x, y))}{df(x, y)} = 1 \\
else \\
\quad \frac{dp(f(x, y))}{df(x, y)} = r \times \left\{a \cdot f (x, y)^3 + b \cdot f (x, y)^2 + c \cdot f (x, y) + d\right\}^{r-1} \\
\quad \times \left\{3a \cdot f (x, y)^2 + 2b \cdot f (x, y) + c\right\}
\]
• LCRT

Fig. 6. Application of LCRT to approximate knee curve (easy saturation)

Applied to it by substituting Eq.(23) for Eq.(8)

\[
g(x, y) = p(f(x, y)) \times \left(\frac{f(x, y)}{f_{ave}(x, y)} \right)^{\alpha \left(\frac{1 - f(x, y)}{p(f(x, y))} \right)\frac{dpt(f(x, y))}{df(x, y)}}
\]

\text{Eq.(23)}

Parameter \(r = 2.2, m = 2.0', k = 0.9', t = 0.35', \alpha = 1.0 \)
- LCRT for deciding α

To compensate the degradation in visual contrast:
- The input luminance is smaller than the local average
- Enlarged by setting a gain parameter α higher than 1.0

Fig. 7. Application of LCRT to approximate knee curve using adjusted parameter α (hardly saturation)
◆ System
– Transformed into the luminance component Y
– Tone mapped image
 • Applying the approximate knee curve into the Y
– Spatial averaging filter
 • Local contrast gain
Experimental results

Calibration

– Digital still camera
 • Fujifilm Finepix F710
 • Two sensors
 – S (sensitive) and R (range) sensor
 » S-sensor is normal sensor
 » R-sensor is less sensitive and extends the ability to capture dark and light of photos

Fig. 8. Calibration image captured by S sensor
- S and R sensor

Synthesize the images with the mixing ratios

\[
\text{if } (S(x, y) < \text{th0}) \\
\quad f(x, y) = S(x, y) \\
\text{else if } (S(x, y) < \text{th1}) \\
\quad f(x, y) = \frac{\text{th1} - S(x, y)}{\text{th1} - \text{th0}} \times S(x, y) + \frac{S(x, y) - \text{th0}}{\text{th1} - \text{th0}} \times \{17.399 \times R(x, y)\} \\
\text{else} \\
\quad f(x, y) = 17.399 \times R(x, y)
\]

Fig. 9. Relationship between pixel levels captured by S and R sensors
- Mixing ratio

![Graph showing mixing ratio of S image and R image to synthesize HDR images.](image)

Fig. 10. Mixing ratio of S image and R image to synthesize HDR images

- Normal digital camera
 - Without multiple range sensors cannot capture
 - LDR image
Fig. 11. Experimental result

- Result image

(a) Linear range compression

(b) Knee curve

(c) Proposed method
Result image (another approach)

Fig. 12. CIC paper
Conclusion and future work

- **Dynamic range compression**
 - To preserved visual contrast
 - Guarantees the continuities in the output level
 - Preserving the local contrast in the highlight regions

- **Future work**
 - Currently takes high computation cost with a large memory
 - More efficient implementation
Appendix

\[G(x, y) = P(F(x, y)) + \left\{ 1 - \frac{dP(F(x, y))}{dF(x, y)} \right\} \cdot (F(x, y) - F_{\text{ave}}(x, y)) \]

\[
\begin{align*}
F(x, y) &= \log\{f(x, y)\} \\
F_{\text{ave}}(x, y) &= \log\{f_{\text{ave}}(x, y)\} \\
G(x, y) &= \log\{g(x, y)\} \\
G_{\text{ave}}(x, y) &= \log\{g_{\text{ave}}(x, y)\} \\
P(F(x, y)) &= \log\{p(f(x, y))\}
\end{align*}
\]
\[
g(x, y) = p(f(x, y)) \cdot \left(\frac{f(x, y)}{f_{\text{ave}}(x, y)} \right)^{1 - \frac{dP(F(x, y))}{dF(x, y)}}
\]

\[
\frac{dP[F(x, y)]}{dF(x, y)} = \frac{d[\log\{p(f(x, y))\}]}{d[\log\{f(x, y)\}]} = \frac{\left\{ \frac{d[\log\{p(f(x, y))\}]}{df(x, y)} \right\}}{\left\{ \frac{d[\log\{f(x, y)\}]}{df(x, y)} \right\}} = \frac{\left\{ \frac{d[\log\{p(f(x, y))\}]}{dp(f(x, y))} \cdot \left\{ \frac{dp(f(x, y))}{df(x, y)} \right\} \right\}}{\left\{ \frac{d[\log\{f(x, y)\}]}{df(x, y)} \right\}} = \frac{1}{p(f(x, y))} \cdot \left\{ \frac{dp(f(x, y))}{df(x, y)} \right\} = \frac{f(x, y)}{p(f(x, y))} \cdot \frac{dp(f(x, y))}{df(x, y)}
\]