Optimizing Gamut Mapping: Lightness and Hue Adjustments

Journal of imaging science and technology
Vol. 44, No. 4, July/Aug. 200
Patrick G. Herzog and Hendrik Buring

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Flowchart

Introduction of gamut mapping

Chroma compression with constant lightness

Chroma compression with modified lightness

Issues of gamut mapping

Mapping towards a focal point

Relative lightness Change mapping
Abstract

- Issues of gamut mapping
 - The mapping space
 - The coordinate system within the space
 - The gamut boundary description
- Investigation of several chroma compression algorithms with constant and modified lightness and hue
- Evaluation of mapping type and mapping direction
Proposed Gamut mapping

- Mapping colors towards a focal point
- Relative Lightness Change (RLC) technique
Introduction

◆ Gamut mapping
 – An important step in color image reproduction
 – Technical limitation
 • Variation between color rending processes
 • Differences in viewing condition
 • A perfect match of a reproduced image to the original

◆ Evaluation’s of color images
 – Psychophysical experiments

◆ Proposed method
 – Preserve higher chroma
 • Based on modification of lightness and hue
Parameters of Gamut Mapping

- Direction versus type of mapping
 - Two basic parameters
 - The direction of mapping
 - Lightness/brightness information
 - The type of mapping
 - Variation of Clipping and linear compression
 - The optimum mapping type depends on the mapping direction
 - The optimum direction mapping depends on the specified type of mapping
 - Extend to include the modification of the hue angle
◆ Color spaces and coordinates system
 – Mapping space
 • Based on human perception
 • Correlates of perceived lightness, chroma and hue
 • The coordinate system to choose within the color space
 – Lightness constant → Cylindrical coordinates
 – Centroid mapping → Spherical coordinates
◆ Gamut boundary description
 – Calculation of image gamut
 • Scanning all the image gamut
 • Finding the maximum chroma for a given lightness-hue pair
 – The image gamut boundary
 • Smoothing gamut boundary
 • Depending on the direction
 – Gamut boundary description
 • Proposed by Morovic
 • Using segment
 • Very compact and reasonably accurate
– Gamut boundary

Fig. 1. Maximum operator for the smoothing of image gamuts.
• Some drawbacks
 – Uncorrelates in terms of perceptual attributes
 – Very sophisticated technique in cross sectioning of a certain mapping direction

– The latest achievement of image capture
 • Multispectral imaging
 • Multispectral printing
◆ Chroma compression with constant lightness
 – Constant of CLELAB lightness and hue angle
 – Type of mapping: Linear compression and clipping
 – Three ensembles
 • Class 1: Representation of the piecewise linear compression functions of Gentile
 • Class 2: Compression of the remainder of the colors to the remaining region above the threshold
 • Class 3: Approximation to class 1, but rounded edge
 – Clipping better than linear compression
– The degree of clipping parameter

Fig. 2. Ensemble of mapping type for mapping along the cylindrical/spherical radius for a maximum reproduction radius of 0.6. The degree of soft clipping is dependent on parameter λ.
Chroma compression with modified lightness
 – Using the reproduced chroma lower than the original chroma
 – Centroid mapping
 • Mapping towards a fixed focal point on the lightness axis
 • Disadvantage
 – Bright area in image → more darken
 – Dark area in image → more lighten
 – Hybrid mapping
 • Centroid → in the upper half
 • Constant lightness → in the lower half
– Two step technique
 • Certain amount of chroma compression : constant lightness
 • Centroid mapping

◆ Lightness change would produce the most acceptable results
Gamut mapping method

- Proposed gamut mapping method
 - Mapping colors towards a focal point
 - Relative Lightness Change (RLC) technique
 - The goal of gamut mapping
 - To conserve as much of the original chroma
 - A major concerned of the degree of clipping
 - The mapping type
 - The monotonically increasing function
Mapping towards a focal point

- The mapping method
 - To clip all out-of-gamut colors towards a focal point on the lightness axis
 - Mapping direction → To lightness modification

- Our ideal
 - To focal point of mapping towards negative chroma
 - To focal point
 - Depending on the hue angle and locating at the lightness of the cups
Fig. 3. To achieve a mapping direction between mapping towards the cups point and mapping with constant lightness, the focal point is moved towards negative chroma.
– The equal lightness

Fig. 4. Contour lines of equal lightness after clipping out-of-gamut colors towards the focal point at $C^* = 0$ and $L^* = L_{cusp}^*$.
Relative lightness change mapping

- Mapping in varying directions
 - Based on lightness changes
 - Mapping colors with curved lines
 - Relative to the L-distance from cusp
 - Relative to the C-distance from the gamut boundary

- Algorithm

\[
\text{If } (C^* < \lambda \hat{C}_{\text{out}} (L^*, h^*)) \text{ or } (\hat{C}_{\text{in}} (L^*, h^*) < \hat{C}_{\text{out}} (L^*, h^*)) \text{ ; Do Nothing,}
\]

\[
\hat{C}_{\text{in}} (L^*, h^*) : \text{boundaries of the image gamut}
\]

\[
\hat{C}_{\text{out}} (L^*, h^*) : \text{boundaries of the reproduction gamut}
\]

\[
\lambda : \text{degree of soft clipping}
\]
Otherwise

\[\Delta L^* = \frac{\alpha}{100} \frac{(L_{CUSP}^*(h^*) - L^*)(C^* - \lambda \hat{C}_{out}(L^*, h^*))}{C_{ref} - \lambda \hat{C}_{out}(L^*, h^*)} \]

\[L_{mod}^* = L^* + \Delta L^* \]

\[C_{mod}^* = \lambda \hat{C}_{out}(L_{mod}^*, h^*) + (1 - \lambda) \hat{C}_{out}(L_{mod}^*, h^*) \cdot \frac{C^* - \lambda \hat{C}_{out}(L_{mod}^*, h^*)}{\hat{C}_{in}(L^*, h^*) - \lambda \hat{C}_{out}(L_{mod}^*, h^*)} \]}
- RLC mapping method parameters

\[L_{cusp}^* (h^*) : \text{Lightness of the cusp at a given hue angle} \]

\[C_{ref} : \text{Parameter the curvature of the mapping direction} \]

\[C_{ref} = \sqrt{2} \times 128 : \text{experiment} \]

\[\alpha : \text{Degree of lightness change} \]

\[\alpha = 0 : \text{no change} \]

\[\alpha = 100\% : \text{maximum lightness change} \]

\[\lambda : \text{Degree of soft clipping} \]

\[\lambda = 0 : \text{linearcomp ression} \]

\[\lambda = 100\% : \text{clipping} \]
– RLC method

Fig. 5. Contour lines of equal lightness after clipping out-of-gamut colors with relative lightness change and $\alpha = 100\%$.
Experiments

- Paired comparison
 - Viewing same media: Barco calibrated monitor
 - Monitor, dye diffusion thermal transfer printer
 - Psychophysical experiment
 - Dark surround
 - Lightness ranges: 0-100
 - Positions on the Screen are random
 - Test time: 30s/image pair
 - Image dependent algorithm
– The psychophysical experiments image

Fig. 6. The images used in the psychophysical experiment.
– A number of out-of-gamut and distance

Fig. 7. The colors of the “child” image together with the maximum printer chroma (50%-scaled) in the a^*b^* projection.
Experiment I

- Investigated the optimum mapping direction for a given mapping type
- Mapping type → Clipping
- Testing direction
 - Mapping with constant lightness
 - Mapping towards a focal point at the lightness of the cusp
 - Relative lightness change
– Result of experiment I

Fig. 8. Rating of the eight tested methods of experiment I on a psychophysical scale averaged over eight observers and all image. Algorithms are dL0, RLC25, RLC50, RLC100, FO0, F-20, F-50, F-100, all with $\lambda = 1$ (clipping).
Experiment II

- To optimize mapping type for a given mapping direction
- RLC50 and F0 mapping direction
- Mapping type: Linear compression to clipping
- Result of experiment II

Fig. 9. Rating of the eight tested methods of experiment II on a psychophysical scale for the accuracy of four test images. Algorithms are RLC50\(\lambda_0\), RLC50\(\lambda_{1/3}\), RLC50\(\lambda_{2/3}\), RLC50\(\lambda_1\), F0\(\lambda_0\), F0\(\lambda_{1/3}\), F0\(\lambda_{2/3}\), F0\(\lambda_1\), where “\(\lambda_{2/3}\)” means \(\lambda=2/3\). ‘la’ in the graphic means ‘\(\lambda\)’.
Example images (I, II)-girl

Fig.9 Original images

Fig.10 RLC50λ1

Fig.11 F0λ0

Fig.12 F0λ1
Example images (I, II)-creek

Fig. 13 Original images
Fig. 14 RLC50λ1
Fig. 15 F0λ0
Fig. 16 F0λ1
Experiment III

- The usefulness of hue modifications in order to preserve higher chroma
- Modified up to a certain limit $\pm 10^\circ$
- Change $\pm 1^\circ$ at each steps
– Hue modification

Fig. 17. Hue modifications provide a means to retain higher chroma in reproduced images.
Hue modification
 – Improve the appearance of reproduced images

Artifacts
 – Applied to independently for each pixel: Color seams
 – Ex) yellow hue
 – Chroma gain is high for high lightness
 – Chroma gain is low for low lightness
 – Same hue: Same modification vector
 – Result
 – Perfect result is not acquired
Conclusions

◆ Gamut mapping algorithms
 – Different mapping types and mapping directions
 – Focal point mapping and RLC method
 • Moderate adjustment of lightness and hue
 • Optimum mapping direction : RLC50

◆ Future work
 – Verified under different conditions
 • Mapping from monitor to real printer
 • Further test images : more complex scenes