Color Image Segmentation
An Innovative Approach

Patten Recognition 35 (2002),
Tie Qi Chen, Yi Lu*.
Abstract

- Color image segmentation
 - Color clustering *in a color space*
 - Fuzzy clustering algorithm
 - Color region segmentation *in the image domain*
 - Three clustering algorithms
Color Image Segmentation System

Overview of the color image segmentation

Stage 1: Color segmentation
- Compute 3D histogram in a color space
- Fuzzy clustering in color histogram domain
- Fuzzy membership function
- Color distances between the neighboring regions

Stage 2: Region segmentation
- Map initial clusters to image domain
- Merging neighboring clusters
- Region sizes and maximum number of clusters

A set of color regions

Fig. 1. An overview of the color image segmentation.
A Fuzzy Clustering Algorithm for Color Segmentation

- **Color histogram of an image**
 - $f(C)$: The number of pixels, C: A color in the image

- **Fuzzy clustering algorithm**
 - Fuzzy set
 - A cluster of similar colors
 - Fuzzy membership function
 - The likeness of a color pixel belonging to a fuzzy set
Two critical issues involved in a fuzzy membership function

- Generating fuzzy membership functions
 - The likeness of a data element belonging to a color cluster

- Defining a color distance function
 - Between two color clusters
 - Between a color and a color cluster
Fuzzy membership function

- Gaussian function

- The probability if a color \(C \) belonging to a color cluster

 \[G_R(C - P) = e^{-\|C - P\|^2 / R^2} \]

 - \(P \): The center of the cluster
 - \(R \): The radius of the cluster

- The probability of a color belonging to the k-th cluster and not belonging to any other cluster

 \[H_k(C; P_1, \cdots, P_M) = G_R(C - P_k) \prod_{i \neq k} [1 - G_R(C - P_i)] \]
– **Important characteristics** of fuzzy membership function

- Belief value decreases as the distance between a color C and a color cluster P increases
- Belief value of a particular color belonging to a cluster depends on its relationship with other clusters
- Belief value of a color belonging to a cluster is always greater than zero
Cluster separability

- How well a given n-cluster description matches a given set of data
- Objective function
 - A mean square error over the inter and intro distances of all color clusters
 \[
 F(P_1, \cdots, P_M) = \sum_{k=1}^{M} \sum_{C_i} f(C_i) \cdot H_k(C_i; P_1, \cdots, P_M) \cdot \|C_i - P_k\|^2
 \]
 - Ex) In the case when there is only one cluster (R is radius of cluster)
 \[
 F(P) = \sum_{C_i} d(C_i - P) = \sum_{C_i} \|C_i - P\|^2 \cdot G_R(C_i - P)
 \]
 - \|C_i - P\| = R: Large mean square error \rightarrow Largest uncertainty
– Optimization process

- C_k: Initial center of cluster 1, \(t=0 \), \(P_M^0 = C_k \)

- \[
P^{t+1}_M = \frac{\sum_{c_i} C_i \cdot f(C_i) \cdot H_M(C_i; P_1, \ldots, P_{M-1}, P^t_M)}{\sum_{c_i} f(C_i) \cdot H_M(C_i; P_1, \ldots, P_{M-1}, P^t_M)}
\]

- \(\delta \): The threshold of the difference between a cluster center and the cluster center at the previous iteration

- If \(\|P^t_M - P^{t+1}_M\| > \delta \) , compute a new center

- If \(\|P^t_M - P^{t+1}_M\| \leq \delta \) , accept as the center of the cluster
– Optimization process (Generating a new cluster)

\[f(C_k)V(C_k; P_1, \cdots, P_M) \leq \varepsilon \sum_{C_k} f(C_k) \]

\[V(C; P_1, \cdots, P_M) = \prod_{k=1}^{M} [1 - G_R(C - P_k)] \]

- The probability of a color not belonging to any existing cluster
- \(\delta \) controls the number of iterations in optimizing a new cluster center
- \(\varepsilon \) determines when to stop generating new clusters
- \(R \) is the cluster radius
- **Cluster radius** R
 - How much the clusters can overlap with each other

- **Color clustering results**

Fig. 2. Color clustering results with different cluster radii on an image with simple features: (a) original image, (b) $R=64$, (c) $R=32$, (d) $R=16$, and (e) $R=8$.
Image Segmentation in Image Space

- Region Segmentation algorithm in image domain
 - Color similarity and spatial adjacency
 - Important parameters in the image domain
 - The color distances among neighboring clusters in the spatial domain
 - Cluster sizes
 - The maximum number of clusters in CL3
Merging process

- The order of merging clusters

- **Method 1**
 - Merge the neighboring clusters whose color distances are below threshold
 - No consideration of the order of merging
 - Select the smallest cluster and merges the cluster with one of its neighbors to which it has the smallest color distance

- **Method 2**
 - Selects the smallest cluster and merges the cluster with one of its neighbors to which it has the smallest color distance
– **Method 3**

- Repeatedly merges the smallest clusters with the neighbors
- Selects a pair of two adjacent clusters that has the smallest color distance within the entire image to merge
- Merges the smallest cluster with its closest neighbor in color distance
Two functions for computing the color distance

- Color difference of the border pixels of clusters A and B

\[B_\text{Dist}(A, B) = |Ave_B(A) - Ave_B(B)| \]

Fig. 2. Illustration of border points between region A and B.
The central color of a cluster

\[C_A = \frac{\sum_{p \in A} C(p)}{|A|} \]

- \(p \) is a pixel \(\in A \),
- \(|A|\) is the size of \(A \),
- \(C(p) \) is the 3-D color vector
Fig. 3. Comparison of clustering results generated by three different spatial merging methods: (a) shows an egg nebula image, (b) shows the clusters generated by the fuzzy clustering algorithm with $R=16$, (c), (d), and (e) show the clustering result generated by method 1, 2, and 3, respectively, from (b).