Hybrid LMS-MMSE inverse halftoning technique

Pao-Chi Chang, Che-Sheng Yu, and Tien-Hsu Lee

School of Electrical Eng. & Computer Sci.
Kyungpook Nat’l Univ.
Abstract

- The objective of this paper
 - Reconstruction of high quality gray-level image

- Optimal inverse halftoning method
 - LMS adaptive filtering algorithm
 - Lookup tables designed by the MMSE method
 - Reduce the computational complexity
 - Hybrid LMS-MMSE inverse halftoning algorithm
1. Introduction

- Reconstruction process
 - Sliding window filtering process
 - Major parameter
 - Filter shape
 - Filter coefficients
 - Filter order
 - LMS algorithm
 - Low complexity
 - Excellent performance
- MMSE table lookup method
 - Good reconstructed quality and fast speed
 - Empty cell problem

- Hybrid LMS-MMSE method
 - MMSE lookup table method is first choice
 - LMS method is used in empty cell
 - Hybrid method yields the best performance
2. Inverse halftoning by LMS adaptive filtering

- Adaptive algorithm
 - The structure of the training process

Fig. 1. Block diagram of the LMS adaptive filtering algorithm
– The reconstructed image

\[\hat{g}(i, j) = \sum_{(k,l) \in M} w(k,l) b(i-k, j-l) \]

where

\[w(k,l) \quad \rightarrow \quad \text{Filter weight} \]
\[M \quad \rightarrow \quad \text{Filter mask} \]
\[b(i-k, j-l) \quad \rightarrow \quad \text{Bi-level halftoned pixel} \]

– The reconstruction error

\[e(i, j) = g(i, j) - \hat{g}(i, j) \]
- Weight adaptation

\[w_{m+1}(k, l) = w_m(k, l) + 2\mu e(i - k, j - l)b(i - k, j - l) \]

\[\rightarrow \quad \text{all}(k, l) \in M \]

where

\[m \rightarrow \text{Iteration index} \]

\[\mu \rightarrow \text{Parameter of updating step size} \]
Optimal mask shapes

- The use of 7×7 square mask
- Training the reconstruction filter
- Eliminate the least significant weight
- Observe the mask shape
(a) Clustered-dot dither
(b) Dispersed-dot dither
(c) Error diffusion

Fig. 2. Variation of the LMS mask shape and PSNR values
Fig. 3. Coefficients of the filters designed by the LMS method

(a) Clustered-dot dither

(b) Dispersed-dot dither

(c) Error diffusion
3. MMSE table lookup inverse halftoning

Algorithm

- The encoder and decoder
 - Mapping a gray level image to a binary halftoned image
 - Mapping an N-dimensional binary pattern to a gray level image
 - Optimal decoder
 - Centroid theorem

Mapping binary block to a gray level pixel
Centroid theorem

- Unique optimal codebook

\[Y_i = E[X \mid X \in R_i] \]

Where

- \(R_i \rightarrow \) Set of original gray level value pixels that are mapped to \(i \)th binary pattern
- \(X \rightarrow \) Original gray level pixels
- \(Y_i \rightarrow \) Reconstructed gray level pixel value with respect to the halftone pattern \(i \)
– Construction of the lookup table

- Encoding mapping
 - Encode the gray level images by a given halftoned method
 - Tracking of the gray level value of the central point in a mask
 - Record the histogram $T_i(a)$
– Centroid calculation
 • Calculates the centroid Y_i of the central point of a mask

 \[
 Y_i = \frac{\sum_{a=0}^{255} a \times T_i(a)}{\sum_{a=0}^{255} T_i(a)} \quad i = 0, 1, \ldots, 2^N - 1
 \]

– Table setup
 • Fill in the centroids into a table with 2^N entries
 • Design separately for different halftoned method
Experiments

- Evaluation of reconstruction quality
 - Mask size and mask shapes

(a) 9-point mask

Fig. 4. Halftone patterns and the corresponding histograms of the gray level distribution for the central pixel in clustered-dot dither
(b) 13-point mask

(c) 13-point mask
Table 1. PSNR (dB) of the reconstructed image with various mask size and halftone methods

<table>
<thead>
<tr>
<th>Image</th>
<th>Method</th>
<th>Mask Size</th>
<th>9</th>
<th>13</th>
<th>16</th>
<th>21</th>
<th>25</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gaussian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMS-S</td>
<td>13.31</td>
<td>19.26</td>
<td>22.44</td>
<td>26.96</td>
<td>25.82</td>
<td>28.16</td>
<td>26.66</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>20.93</td>
<td>23.67</td>
<td>25.39</td>
<td>25.82</td>
<td>25.82</td>
<td>28.16</td>
<td>26.66</td>
</tr>
<tr>
<td></td>
<td>MMSE</td>
<td>22.41</td>
<td>25.39</td>
<td>25.39</td>
<td>25.82</td>
<td>25.82</td>
<td>28.16</td>
<td>26.66</td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
<td>22.41</td>
<td>25.39</td>
<td>25.39</td>
<td>25.82</td>
<td>25.82</td>
<td>28.16</td>
<td>26.66</td>
</tr>
<tr>
<td></td>
<td>LMs-S</td>
<td>23.69</td>
<td>28.70</td>
<td>28.70</td>
<td>28.70</td>
<td>28.70</td>
<td>28.70</td>
<td>28.70</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>24.81</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>MMSE</td>
<td>24.93</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
<td>24.93</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Error Diffusion</td>
<td>24.93</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Gaussian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>24.01</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>LMs-S</td>
<td>25.21</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>25.21</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>MMSE</td>
<td>25.21</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
<td>25.21</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Error Diffusion</td>
<td>25.21</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>Gaussian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: PSNR (dB) of the reconstructed image with various mask size and halftone methods.
- Results of the performance
 - MMSE method acquired best reconstruction quality
 ✓ Resultant optimal masks of the LMS method
 ✓ Optimal mapping
 - Empty cell problem
 ✓ No entry mapped to a specific halftone pattern
Table 2. Number of nonempty cells and empty cell fetches (in parentheses) of the MMSE method with various table sizes and halftone methods

<table>
<thead>
<tr>
<th>Image</th>
<th>Method</th>
<th>Table Size</th>
<th>$2^9=512$</th>
<th>$2^{13}=8192$</th>
<th>$2^{16}=65536$</th>
<th>$2^{21}=2097152$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lena</td>
<td>Clustered-dot</td>
<td></td>
<td>500(0)</td>
<td>3307(118)</td>
<td>9064(358)</td>
<td>26532(603)</td>
</tr>
<tr>
<td></td>
<td>Dispersed-dot</td>
<td></td>
<td>286(22)</td>
<td>1494(119)</td>
<td>3910(242)</td>
<td>14225(577)</td>
</tr>
<tr>
<td></td>
<td>Error Diffusion</td>
<td></td>
<td>512(0)</td>
<td>8174(2)</td>
<td>60280(162)</td>
<td>635739(11610)</td>
</tr>
<tr>
<td>Peppers</td>
<td>Clustered-dot</td>
<td></td>
<td>500(1)</td>
<td>3307(153)</td>
<td>9064(504)</td>
<td>26532(864)</td>
</tr>
<tr>
<td></td>
<td>Dispersed-dot</td>
<td></td>
<td>286(30)</td>
<td>1494(176)</td>
<td>3910(365)</td>
<td>14225(922)</td>
</tr>
<tr>
<td></td>
<td>Error Diffusion</td>
<td></td>
<td>512(0)</td>
<td>8174(3)</td>
<td>60280(195)</td>
<td>635739(10921)</td>
</tr>
<tr>
<td>Lake</td>
<td>Clustered-dot</td>
<td></td>
<td>500(2)</td>
<td>3307(231)</td>
<td>9064(684)</td>
<td>26532(1457)</td>
</tr>
<tr>
<td></td>
<td>Dispersed-dot</td>
<td></td>
<td>286(30)</td>
<td>1494(150)</td>
<td>3910(320)</td>
<td>14225(891)</td>
</tr>
<tr>
<td></td>
<td>Error Diffusion</td>
<td></td>
<td>512(0)</td>
<td>8174(9)</td>
<td>60280(718)</td>
<td>635739(25173)</td>
</tr>
</tbody>
</table>
4. Hybrid LMS-MMSE inverse halftoning

Algorithm

Fig. 5. Flowchart of the hybrid LMS-MMSE inverse halftoning method
Procedure

- Determine the maximum order of the LMS adaptive filter
- Determine the maximum order of the MMSE method
- Determine the optimal mask shapes
- Build up the reconstruction table
- Determine the empty cell threshold
- Replace the empty cell table entry by the output of the M-point LMS filter
Experiments

(a) Gaussian filter (19.26dB) (b) 21-point hybrid LMS-MMSE method (26.96dB)

Fig.6. Inversed halftoned images from clustered dot dither method
Fig. 7. Inversed halftoned images from dispersed dot dither method

(a) Gaussian filter (28.30dB) (b) 21-point hybrid LMS-MMSE method (28.20dB)
Fig. 8. Inversed halftoned images from error diffusion

(a) Gaussian filter (30.41dB)
(b) 21-point hybrid LMS-MMSE method (31.64dB)
Comparison of the reconstruction quality

- Hybrid LMS-MMSE approach is best perform
 • Error diffusion method

Table 3. Comparison of various inverse halftoning methods for the error diffusion kernel
5. Conclusion

- Hybrid LMS-MMSE method
 - Obtains optimal filter mask
 - MMSE table lookup method
 - Improves the reconstruction performance
 - Reduces the computational complexity
 - Solves the empty cell problem