Accurate Estimation of the Non-Linearity of Input-Output Response for Color Digital Camera

IS&T’s 2003 PICS Conference
T. L. V. Cheung and S. Westland

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

◆ Estimation of the non-linearity of the channels
 – Different techniques
 • Based on the luminance of samples
 • Based on the mean reflectance of samples
 • Based on the spectral sensitivities of the channels
 – Experimental results
 • Small difference between each method
Introduction

◆ Traditional device characterization
 – Ascertaining sensor values for targets with known color characteristics
 – Transforming the sensor values to match the target CIE values

◆ Recent research
 – In order to estimate the non-linearity it is necessary to know the spectral sensitivities of each color channels
Background

- **Raw channel responses**

\[
R = \sum E(\lambda)S_R(\lambda)P(\lambda) \\
G = \sum E(\lambda)S_G(\lambda)P(\lambda) \\
B = \sum E(\lambda)S_B(\lambda)P(\lambda)
\]

(1)

where
- \(P(\lambda)\) : Known spectral reflectance of a uniform surface
- \(E(\lambda)\) : Known spectral power distribution
- \(S_R(\lambda), S_G(\lambda), S_B(\lambda)\) : Spectral sensitivities
◆ Input-output non-linearity function

\[B' = f(B) \] (2)

where \(B' \) : Actual output response

◆ Luminance for each surface

\[L = \sum E(\lambda)V(\lambda)P(\lambda) \] (3)

where \(V(\lambda) \) : Luminous efficiency function
Reflectance spectra invariant to wavelength

- Ratio of the luminance for each surface

\[B_1 : B_2 : B_3 = L_1 : L_2 : L_3 \]

- Reflectance spectra invariant to wavelength

![Graph](image)

Fig. 1. Reflectance spectra of three hypothetical grey surfaces with equal spectral reflectance across the wavelength spectrum.
◆ Typical reflectance spectra
 – Typical reflectance spectra

![Graph showing reflectance spectra of three hypothetical grey surfaces with spectral reflectance that varies with wavelength.]

Fig. 2. Reflectance spectra of three hypothetical grey surfaces with spectral reflectance that varies with wavelength.
Experimental

- Characterization procedure for each technique of estimating the non-linearity

1. Estimate the non-linearity for the system using the Munsell grey samples.
2. Apply the estimates of the non-linearity to the measured system outputs for the Macbeth DC ColorChecker to yield the linearized RGB values.
3. Compute the coefficients of a polynomial transform that maps $RGB \rightarrow XYZ$ based upon the RGB and XYZ values of the Macbeth DC ColorChecker samples.
4. Compute the CIELAB color difference between the actual XYZ values and the XYZ values obtained from steps 1-3 for the Macbeth DC ColorChecker samples.
5. Use the polynomial transform obtained from the Macbeth DC ColorChecker samples to compute XYZ values for the samples in the Macbeth ColorChecker and compute CIELAB color differences between the actual and predicted values.
– Computing camera output values by a power law with exponent $\gamma = 1.8$

$$R' = R^\gamma, \ G' = G^\gamma, \ B' = B^\gamma$$

(5)

– Spectral sensitivities of the three channels

Fig. 3. A set of known spectral sensitivities of a camera system.
– Using the luminance or mean reflectance of the samples

\[R' = L', \quad G' = L', \quad B' = L' \]

\[R' = P', \quad G' = P', \quad B' = L' \]
Results

- Estimated non-linearity

Table 1. Non-Linearity Estimations Under Illuminant D_65

<table>
<thead>
<tr>
<th></th>
<th>R channel</th>
<th>G channel</th>
<th>B channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral sensitivities</td>
<td>1.8000</td>
<td>1.8000</td>
<td>1.8000</td>
</tr>
<tr>
<td>Luminance</td>
<td>1.8087</td>
<td>1.8044</td>
<td>1.8146</td>
</tr>
<tr>
<td>Mean reflectance</td>
<td>1.7708</td>
<td>1.7644</td>
<td>1.7729</td>
</tr>
</tbody>
</table>

Table 2. Non-Linearity Estimations Under Illuminant A

<table>
<thead>
<tr>
<th></th>
<th>R channel</th>
<th>G channel</th>
<th>B channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral sensitivities</td>
<td>1.8000</td>
<td>1.8000</td>
<td>1.8000</td>
</tr>
<tr>
<td>Luminance</td>
<td>1.8177</td>
<td>1.8044</td>
<td>1.8135</td>
</tr>
<tr>
<td>Mean reflectance</td>
<td>1.7768</td>
<td>1.7615</td>
<td>1.7695</td>
</tr>
</tbody>
</table>

Table 3. Non-Linearity Estimations Under Illuminant F_11

<table>
<thead>
<tr>
<th></th>
<th>R channel</th>
<th>G channel</th>
<th>B channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral sensitivities</td>
<td>1.8000</td>
<td>1.8000</td>
<td>1.8000</td>
</tr>
<tr>
<td>Luminance</td>
<td>1.7938</td>
<td>1.8076</td>
<td>1.8087</td>
</tr>
<tr>
<td>Mean reflectance</td>
<td>1.7539</td>
<td>1.7657</td>
<td>1.7658</td>
</tr>
</tbody>
</table>
Characterization performance

Table 4. Comparison of Memorization Performance With Different Linearization Techniques

<table>
<thead>
<tr>
<th></th>
<th>Spectral sensitivities</th>
<th>Luminance</th>
<th>Mean reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median ΔE_{ab}</td>
<td>0.1039</td>
<td>0.1041</td>
<td>0.1056</td>
</tr>
<tr>
<td>Maximum ΔE_{ab}</td>
<td>0.6178</td>
<td>0.6195</td>
<td>0.6252</td>
</tr>
</tbody>
</table>

Table 5. Comparison of Generalization Performance With Different Linearization Techniques

<table>
<thead>
<tr>
<th></th>
<th>Spectral sensitivities</th>
<th>Luminance</th>
<th>Mean reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median ΔE_{ab}</td>
<td>1.5807</td>
<td>1.6775</td>
<td>1.6931</td>
</tr>
<tr>
<td>Maximum ΔE_{ab}</td>
<td>2.6699</td>
<td>2.8270</td>
<td>2.8726</td>
</tr>
</tbody>
</table>
Characterization performance with random noise SD=0.025

Table 6. Comparison of Memorization Performance With Different Linearization Techniques (With Random Noise SD = 0.025)

<table>
<thead>
<tr>
<th></th>
<th>Spectral sensitivities</th>
<th>Luminance</th>
<th>Mean reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median ΔE_{ab}</td>
<td>0.2427</td>
<td>0.2429</td>
<td>0.2441</td>
</tr>
<tr>
<td>Maximum ΔE_{ab}</td>
<td>0.7105</td>
<td>0.7149</td>
<td>0.7304</td>
</tr>
</tbody>
</table>

Table 7. Comparison of Generalization Performance With Different Linearization Techniques (With Random Noise SD = 0.025)

<table>
<thead>
<tr>
<th></th>
<th>Spectral sensitivities</th>
<th>Luminance</th>
<th>Mean reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median ΔE_{ab}</td>
<td>1.6501</td>
<td>1.7417</td>
<td>1.7597</td>
</tr>
<tr>
<td>Maximum ΔE_{ab}</td>
<td>3.1059</td>
<td>3.3054</td>
<td>3.3188</td>
</tr>
</tbody>
</table>
Discussion

◆ Computational model of a camera system
 – Known channel spectral sensitivities and non-linear response
 – Using different techniques to estimate the non-linearity

◆ Experimental results
 – Small difference between each method