Digital Color Imaging
HANDBOOK

Edited by
Gaurav Sharma

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
1.11.5.1 Principal-component recording

- Color recording device
 - Sample spectra of image with visual information
 - Extremely slow and expensive

- Scanner Visual Space
 - In the absence of noise
 - Karhunen-Loeve Transformation (Hotelling Trans.)
 - Obtain the best spectra by K principal components of the reflectance spectra
Smooth function of wavelength
 – Spectra represented by three and seven principal components
 – Significant reduction in dimensionality in comparison with spectrophotometric

Linear model based of the PCA
 – Recover illuminant and reflectance
 – Commercial color measuring devices by sensor
 – Analyzing multispectral satellite imagery
1.11.6 Quantization and coding

- Scalar and vector quantization
 - RGB channels with 8 to 12 bits per channel
 - Uniform quantization
 - Companded quantization (gamma correction)
 - Vector quantization
 - 8, 12, or 16 bits of video memory
Coding color image
- Transmission and storage
- Luminance-chrominance space is better than RGB
- Exploit the properties of human vision by allocating fewer bits to the high-frequency chrominance components
- JPEG for still image, MPEG for video data by DCT
- YCbCr space similar to L*a*b* space
1.11.7 Device color space

- Standard color space
 - Need standard color space for communicating between device's color spaces
 - sRGB
 - Based on the characteristics of CRT monitors
 - Using the CRT phosphor as primaries for determining the CMFs
 - Limitation in some respects
 - Cyan and bright yellow region in common printers
 - Standardized CMYK
 - Varying by SWOP, Euroscale and Japan Color
1.12 Color management and calibration

- Calibration in closed-loop configuration

Fig. 1.35. Closed-loop system calibration.
◆ Severe limitation
 – Increase of the number of devices
 – Difficult to construct and maintain each input-output device pair
 – Specific to one output device

◆ Device-independent color space (DVI)
 – Exchange of date between different devices
Fig. 1.36. Device-Independent color calibration.
1.12.1 Calibration and profiles

- Calibration
 - Input device
 - Mapping from device measurement value to DVI color descriptors
 - Output device
 - Mapping from DVI color descriptors to device control values
1.12.1.1 Input device calibration

◆ To calibrate a scanner
 – Select a collection of color patches
 • Span the gamut of interest
 • Avoid metamerism
 – Measure patches by measurement instrument
 • Spectrophotometer and colorimeter
 • Get the device-independent color values in CIELAB space
 – Measure patches by scanner
– Determine the CIE values for measured patch
 • Interpolating function and mapping from the space of scanner measurement values to the chosen DVI
 • Complicated and computationally
 • Using lookup table (LUT)

◆ Digital camera and video camera
 – Using similar fashion to scanner
 – Additional one-dimensional transform
 • Gray/white balancing
1.12.1.2 Output device calibration

- Forward and backward transformation
 - Printer characterization
 - Transform from printer control values to DVI color values
 - Using forward transform to determine the inverse mapping from DVI color values to device control values
 - CRT monitor
 - Represent by parametric models with forward transform
 - Simple matrix transformation by one dimensional transform for the gamma correction
Forward characterization of printer
- Selecting a set of printer control values
- Measuring the corresponding DVI color values
- Forward mapping with interpolation
 - From control value to DVI color values
- Get sampled LUT by interpolating function
- Under color removal (UCR)
 - Due to four degrees of freedom by CMYK
 - Reduce total colorant amounts and using of CMY colorants
1.12.1.3 Device profiles

- Calibration transformation
 - Available to different application
 - Store the device profile

- International color consortium (ICC)
 - Specifying a wide variety of input and output device profiles suitable for efficiently representing the color calibration information
1.12.2 Color management systems

- Color management system (CMS)
 - Interpreting the device profiles
 - Performing the appropriate transformations to and from the device-independent space
 - Perform at several different phases
 - In the devices (e.g., Adobe’s Postscript level 2/3 for printers), in device drivers (e.g., Cannon Colorgear), applications (e.g., Adobe’s Photoshop), or in the operating system (e.g., Apple’s ColorSync / Microsoft Windows)
Difficult to transfer color information
- Significant differences in gamuts of different devices
- Difference in typical viewing conditions for different media
 - Simple colorimetric mach does not give an appearance match

Need gamut mapping and appearance match
1.12.3 Gamut mapping

- Process of mapping the displayable colors from one media to those of another media
- Image dependent method
 - Different strategies for different images
 - Better results, but significantly slow
- Image independent method
 - Clipping in the space of device control values
 - Gamut compression algorithm
1.12.4 Appearance matching

- Different color reproduction media have different viewing condition

- White-point matching
 - Von Kries transformation
 - Converts tristimuli into a space of cone responses

- Characterize psychophysical effects
 - Apparent contrast of an image decreases in a dark surround in comparison to a bright surround
 - Gamma correction