Color Gamut Mapping

Page 247 - 259
Jan Morvic
Presented by Ho-Gun Ha

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Evaluating Gamut Mapping Algorithms

◆ Judgment of performance of the algorithm
 – Color science
 • Color difference equation
 • Measurement of pairs of stimuli

Fig.12.1 Evaluating color difference ΔE equations
– Evaluation of gamut mapping algorithm
 • Simultaneously compared performed relative to each other
Why is there no reference data set in gamut mapping algorithm evaluation

- Color difference
 - Manageable population of inputs
 - Easily quantifiable input
 - Relatively observer-neutral judgment
 - Relatively few evaluation techniques that can be interrelated
 - Easy evaluation of equation’s predictive powers
– Gamut mapping evaluation
 • Population of inputs is significantly greater and not well characterized
 – Any possible source image
 – Any possible source-destination medium combination
 • Any possible choice of desired reproduction property
 • Quantification of inputs involves more resources
 • Judgment are observer dependent
 • Huge variety in evaluation setups and the use of ratio-scale data
 • Past data cannot be used to evaluate new algorithms
◆ Characteristics of published gamut mapping algorithm evaluation
 – How many GMAs were compared with each other
 – Accuracy vs. preference

![Bar chart](img)

Fig. 12.3 Number of GMAs evaluated simultaneously in published studies
– Number of observers and test image used to evaluations

Fig. 12.4 Observer and test image numbers in gamut mapping evaluation studies
◆ What can be said on the basis of existing evaluation

– Color-by-color gamut expansion
 • Lightness expansion followed by chroma expansion along the lines of constant hue

– Spectral gamut mapping
 • Use of representing reflectance
 • Retaining metameric black

– Spatial gamut mapping
 • Universally outperform color-by-color
◆ CIE guidelines
 – Recommended a specific way of GMA evaluation
 • Obligatory image: Ski
 • Obligatory pair of GMA: HPMINDE, SGCK

Fig. 12.5 Interrelating experimental evaluation results
Guidelines specify how to report details of the following aspect of GMA evaluation:

- Test image: at least three additional test images
- Media: successfully characterized device is recommended
- Viewing condition
- Measurement: under similar condition
- Gamut boundary: carrying out gamut mapping
- GMAs
- Mapping color space: CIECAM97s recommended
- Experimental method: at least 15 observers and one of the psychovisual test
Studying specific properties of gamut mapping algorithm

- Quantifying either how specific factors affect it or to what extent its output has chosen property
 - Success of GMAs image-dependent
 - Quantified the continuity of GMA transformations
– Image dependence
 • Limitation of current GMA
 – Dependent performance
 » Magnitude and nature of gamut
 » Reproduced images
 • Taking the per-image GMA score
 – Computing coefficients of determination

Table 12.1 Inter-image GMA score correlation in 21 psychovisual experiments.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Data source</th>
<th>Mean (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDonald et al. (1995)</td>
<td>Appendix</td>
<td>0.10</td>
</tr>
<tr>
<td>Wei et al. (1997)</td>
<td>Tables 2 and 5</td>
<td>0.51, 0.33</td>
</tr>
<tr>
<td>Morovič (1998)</td>
<td>Appendices D, E, F (glossy & plain paper)</td>
<td>0.47, 0.67, 0.43, 0.16</td>
</tr>
<tr>
<td>Braun (1999)</td>
<td>Appendices G (CIELAB/H&B/E&F), P (Xpress/MajestiK), S and W</td>
<td>0.46, 0.41, 0.57, 0.91, 0.61, 0.61, 0.25</td>
</tr>
<tr>
<td>Braun et al. (1999b)</td>
<td>Figure 5</td>
<td>0.08</td>
</tr>
<tr>
<td>Katoh and Ito (1999)</td>
<td>Figure 7</td>
<td>0.64</td>
</tr>
<tr>
<td>MacDonald et al. (2001)</td>
<td>Figure 7</td>
<td>0.28</td>
</tr>
<tr>
<td>Motomura (2000)</td>
<td>Figure 7</td>
<td>0.21</td>
</tr>
<tr>
<td>Newman and Pirrotta (2000)</td>
<td>Tables 2–4</td>
<td>0.23</td>
</tr>
<tr>
<td>Chen et al. (2001)</td>
<td>Table 8</td>
<td>0.35</td>
</tr>
<tr>
<td>Zeng (2006)</td>
<td>Figure 10</td>
<td>0.16</td>
</tr>
</tbody>
</table>
– Sun’s experiments
 • Weather the difference in a chosen characteristics is removed
 – Artificial test image set

Fig. 12.6 Effect of test image set properties on inter-image GMA performance difference
– Continuity
 • Preserving a source color’s hue predictor
 • Whether small changes in the source also result in small changes in destination
 • Quantifying the continuity (Zolliker and Simon)
 – Randomly pick a color from the source gamut
 – Approximate the unit sphere by a regular polyhedron
 – Map the chosen color and the vertices of its enclosing polyhedron
 – Compute the distances between the mapped chosen color and mapped polyhedron vertices
 – Repeating the computation for a number of samples
 » Yielding frequency histogram for all of the distances
Fig. 12.7 Example of gamut mapping a source color and its unit sphere inscribed polyhedron