Design of a Novel Spectrum Sequential Display with a Wide Color Gamut and Reduced Color Breakup

13th Color Imaging Conference, Nov. 2005
Erno H.A. Langendijk, Sander J. Roosendaal, and Marche H.G. Peeters

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

- **RGB color sequential displays**
 - No color filters
 - Necessity to run at high refresh rate for preventing flicker and color breakup

- **Alternative color sequential display**
 - Two color filters per pixel
 • Cyan and magenta
 - Two type of spectra
 • Blue-green and green-red
 - Advantage
 • Wide gamut four primary display
 • Low refresh rates without color breakup or flicker
Introduction

◆ Color sequential displays
 – No filters
 • Red, green, and blue backlight sequentially
 – Disadvantage
 • High rate refresh as 180Hz to avoid flicker
 • Color breakup
 – 600Hz refresh to avoid color breakup (impossible)

◆ Advantage of the proposed display
 – More brightness
 – Higher resolution
 – 100Hz rate without flickers
 – Less color breakup
Display design

◆ Properties
 – Two color filters per pixel
 – Two different backlight spectra time sequentially
 • Three standard LEDs; red, green, and blue
 • Blue and green LED in field 1
 • Green and red LED in field 2
Color filter design 1

- Green filter (497~569nm) and magenta filter
 - Same coordinates between RGB primaries and RGB LEDs respectively
- Deficit
 - Smaller color gamut to cover the EBU color gamut at red and blue color points

![Fig 1. Lamp spectra of field 1 and field 2](image1)

![Fig 2. Chromaticity coordinates](image2)
Color filter design 2

– First step
 • Tune of the blue and red primary by changing the low and high cut off wavelengths of the magenta filter
 • Extension of blue and red primaries on chromaticity coordinates

Fig 3. Lamp spectra of field 1 and field 2
Fig 4. Chromaticity coordinates
- Second step
 - Tune of the green filter to the cyan filter
 - Red and green LEDs on
 - Match of the red and green primaries with EBU
 - Blue and green LEDs on
 - Match of blue with EBU
 - Transformation of a green primary to a cyan primary

![Fig 3. Lamp spectra of field 1 and field 2](image1)

![Fig 4. Chromaticity coordinates](image2)
– White point tuning
 • Choice of the correct ration of the intensities of individual red, green and blue LEDs after color filter design

◆ Combination of filters
 – Two color filters combination
 – Two backlight spectra combination

Filter \times Back lights = Result color on the filter

Fig 5. Combination of spatial color filter
Robustness for color filter variations

- Two design aspect of the filters
 - Cutoff wavelengths
 - Color points of the primaries
 - Size of color gamut
 - Slope of the filter
 - Little effect on the color points of the primaries

- Result after second filter design
 - 10 % higher display luminance covering the EBU gamut
Signal processing

- Matrix mixing technique
 - Multi-primary color mapping technique to calculation of the drive signals for the two fields
- Spectrum sequential addressing scheme

Fig 6. Result of each field and combination and addressing
Visibility of color breakup artifacts

◆ Method to evaluate
 – Front-of-screen performance
 • Between spectrum sequential displays and RGB color sequential display

◆ First evaluation about flickers and color breakup
 – 180Hz
 • 90 (180/2) frame rate for the spectrum sequential display
 • 60 (180/3) frame rate for the color sequential display
 – Result
 • Low flickers on both displays
 • Higher color breakup on color sequential displays
Second evaluation about the same preference

- Decreasing of the refresh rate in spectrum sequential display from 180 until preference of both methods are equal
- Same preference at 90~100Hz
 - Lower color breakup than color sequential displays
Conclusion

- Spectrum sequential display technique
 - Outperform of performance than conventional LCDs
 - Higher luminance and resolution
 - Lower flickers and color breakup