Innovative Color Interpolation Using Fuzzy Logic and Linear Regression

Thirteenth Color Imaging Conference
Nov. 7-11, 2005
Jyh-Jiun Lee, Yu-Sheng Tsai, Yi-Ching Liaw, Chia-Lun Chen, Chia-Hung Cheng, and Shin-Chieh Chen

School of Electrical Engineering and Computer Science
Kyungpook National Univ.
Abstract

Fuzzy logic and linear regression method

- The Fuzzy logic method
 - Based on the effect between pixels
 - To avoid color distortion around the edges
- The linear regression method
 - To process the interaction effect among R, G and B channels
 - To eliminate false color, color moire, aliasing and color shift in the full color camera output
- To show a very good quality
Introduction

Fig. 1 Bayer pattern CFA and interpolation process
Fig. 2 An example of a color image and its Bayer pattern CFA image

(a) Color image (b) Bayer pattern CFA image

Fig. 3 An example of an image with artifacts caused by CFA interpolation

(a) Original image (b) Interpolated image
FLLRM algorithm

- To improve the quality of interpolated images
- To reduce the estimation errors
- To improve the G channels of interpolated images
 - Using fuzzy logic method to reduce the edge distortion between the pixels of G channels
 - The linear regression method to find the relationships between R, G, and B channels
- To modify some missing R and G channels
 - Using fuzzy logic method
G channel interpolation

- Using the Pei and Tam method
 - The good performance and simplicity
- Using the correlation between R and G channels

\[K_R = G - R \] \hspace{1cm} (1)

\[K_B = G - B \] \hspace{1cm} (2)

\[G7 = R7 + \frac{(K_R 3 + K_R 6 + K_R 8 + K_R 11)}{4} \] \hspace{1cm} (3)

- \(K_R 3 = G3 - R3 = G3 - (R1 + R7)/2 \)
- \(K_R 6 = G6 - R6 = G6 - (R5 + R7)/2 \)
- \(K_R 8 = G8 - R8 = G8 - (R7 + R9)/2 \)
- \(K_R 11 = G11 - R11 = G11 - (R7 + R13)/2 \)
R channel and B channel interpolation

\[
R3 = G3 + \frac{(K_R 1 + K_R 7)}{2}
\] \hspace{1cm} (4)

\[
B7 = G7 + \frac{(K_B 2 + K_B 4 + K_B 10 + K_B 12)}{4}
\] \hspace{1cm} (5)

Fig. 4 An example of Bayer pattern
Color Improvement of Interpolated Color Filter Array Image Using FLLRM

![Diagram showing the process of improving interpolated CFA images using fuzzy logic and linear regression.]

Fig. 5 The improving process of interpolated CFA images
G channel interpolation

- To determine the G_i input membership function and G value output membership function
 - Using fuzzy logic method
 - The input membership function
 - High: $G_i > 192$
 - Low: $G_i < 64$
 - The output membership function
 - High: $G_i > 192$
 - Low: $G_i < 64$
 - Medium: $G_i = 128$
Fig. 6 An example for fuzzy logic pattern

(a) Input membership function

(b) Output membership function

Fig. 7 Membership function
Table 1. The Fuzzy Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>G₁</th>
<th>G₂</th>
<th>G₃</th>
<th>G₄</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>3</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>4</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>5</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>6</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>medium</td>
</tr>
<tr>
<td>7</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>8</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>9</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>10</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>medium</td>
</tr>
<tr>
<td>11</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>12</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>medium</td>
</tr>
<tr>
<td>13</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>14</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>15</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>16</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

- If part: And method
- Then part: Cut method
- The between rule: Or method
- The defuzzification: Center-of-Area method
To modify R and B

- Using linear regression

\[G = m_0 R + m_1 B + m_2 \]

where \(m_0, m_1, m_2 \) : linear regression elements

- An estimate G value

\[G_e = \begin{bmatrix} R \\ B \\ 1 \end{bmatrix} \]

(7)
To optimize the estimated G values
- Defined the mean square error

\[Cost _ G(m_j \mid j = 0 \sim 2) = \sum_{i=1}^{n} (G(i) - Ge(i))^2 \] \hspace{1cm} (8)

where \(G(i) \): original value of G channel for i-th color patch
\(Ge(i) \): estimated value of G channel for i-th color patch
\(m_j \): element of the matrix

- To fine the minimum of the cost function

\[\frac{\partial Cost _ G(m_j)}{\partial m_j} = 0 \] \hspace{1cm} (9)
– The matrix element

\[
[m_0 \; m_1 \; m_2]^T = A_{3\times3}^{-1} B_{3\times1}
\] \quad (10)

- The matrix A and B

\[
a(i, j) = \sum_{l=1}^{n} c_i(l) \cdot c_j(l) \quad (11)
\]

\[
b(i) = \sum_{l=1}^{n} G(i) \cdot c_i(l) \quad (12)
\]

where \(c_0 \sim c_2 \) : input coefficient

\(m_0 \sim m_2 \): element of matrix

\(G(i) \) : original G value of i-th color patch
- To obtain R channel and B channel

\[R = \frac{(G - m_1 B - m_2)}{m_0} \quad (13) \quad B = \frac{(G - m_0 R - m_2)}{m_1} \quad (14) \]
To obtain RGB value of the whole images
- The modified R and B channel
 - Using fuzzy logic method

Fig. 10 The result of modified B channel
Experimental Results

- The major components of the platform
 - ITRI digital camera system

Table 2. Component

<table>
<thead>
<tr>
<th>Num.</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 Mega Pixels CCD</td>
</tr>
<tr>
<td>2</td>
<td>ARM9EJ-S 175 MHz core</td>
</tr>
<tr>
<td>3</td>
<td>16K I-cache, 16K D-cache</td>
</tr>
<tr>
<td>4</td>
<td>On-chip 16K RAM and 8K ROM</td>
</tr>
<tr>
<td>5</td>
<td>108 MHz up to 256MB SDRAM</td>
</tr>
<tr>
<td>6</td>
<td>2 SDRAM DMA channels</td>
</tr>
</tbody>
</table>

Fig. 11 The hardware Architecture of digital camera platform
Find the relationship between R, G, and B channel

- The relationship among R, G, and B channel

\[G_e = m_0 R + m_1 B + m_2 \]

\[G_e = 0.39R + 0.665B - 6.114 \]

Fig. 12 The CFA image of GretagMacbeth ColorChecker
Table 3. Experiment Result

<table>
<thead>
<tr>
<th>Num.</th>
<th>R, G, B</th>
<th>G₀</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55,38,36</td>
<td>38.93</td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td>155,111,97</td>
<td>118.62</td>
<td>7.62</td>
</tr>
<tr>
<td>3</td>
<td>59,77,94</td>
<td>79.77</td>
<td>2.77</td>
</tr>
<tr>
<td>4</td>
<td>45,51,40</td>
<td>37.9</td>
<td>13.1</td>
</tr>
<tr>
<td>5</td>
<td>88,89,114</td>
<td>104.05</td>
<td>15.05</td>
</tr>
<tr>
<td>6</td>
<td>85,147,139</td>
<td>119.61</td>
<td>27.39</td>
</tr>
<tr>
<td>7</td>
<td>162,80,49</td>
<td>89.52</td>
<td>9.52</td>
</tr>
<tr>
<td>8</td>
<td>46,57,96</td>
<td>75.86</td>
<td>18.86</td>
</tr>
<tr>
<td>9</td>
<td>142,63,56</td>
<td>86.82</td>
<td>23.82</td>
</tr>
<tr>
<td>10</td>
<td>47,33,45</td>
<td>42.29</td>
<td>9.29</td>
</tr>
<tr>
<td>11</td>
<td>111,130,74</td>
<td>86.21</td>
<td>43.79</td>
</tr>
<tr>
<td>12</td>
<td>172,112,57</td>
<td>98.86</td>
<td>13.14</td>
</tr>
<tr>
<td>13</td>
<td>31,39,74</td>
<td>55.43</td>
<td>16.43</td>
</tr>
<tr>
<td>14</td>
<td>55,86,61</td>
<td>55.87</td>
<td>30.13</td>
</tr>
<tr>
<td>15</td>
<td>119,44,38</td>
<td>65.67</td>
<td>21.67</td>
</tr>
<tr>
<td>16</td>
<td>203,155,80</td>
<td>125.96</td>
<td>29.04</td>
</tr>
<tr>
<td>17</td>
<td>138,70,86</td>
<td>105.23</td>
<td>35.23</td>
</tr>
<tr>
<td>18</td>
<td>45,89,115</td>
<td>87.65</td>
<td>1.35</td>
</tr>
<tr>
<td>19</td>
<td>252,253,251</td>
<td>255</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>175,181,178</td>
<td>180.68</td>
<td>0.32</td>
</tr>
<tr>
<td>21</td>
<td>112,117,115</td>
<td>113.75</td>
<td>3.25</td>
</tr>
<tr>
<td>22</td>
<td>67,71,71</td>
<td>67.04</td>
<td>3.96</td>
</tr>
<tr>
<td>23</td>
<td>40,39,43</td>
<td>38.02</td>
<td>0.98</td>
</tr>
<tr>
<td>24</td>
<td>23,19,24</td>
<td>18.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Fig. 13 The difference value (ΔG) between G and G_e
◆ Result

(a) Result of FLLRM

(b) Result of P&T

Fig. 14 Aperture Resolution chart

(a) Result of FLLRM

(b) Result of P&T

Fig. 15 EIAJ Test chart-B2
Fig. 16 EIAJ Test chart-1

(a) Result of FLLRM (b) Result of P&T

Fig. 17 Resolution chart (In Mega Cycle)

(a) Result of FLLRM (b) Result of P&T

Fig. 18 Half-tone Resolution chart
Conclusions

- The developed algorithm
 - To improve the interpolation colors CFA images
 - Using fuzzy logic method
 - To avoid color distortion around edges
 - Using linear regression method
 - To optimize the interaction effect among R, G and B channel
 - To eliminate false color, color moire, aliasing and color shifts
 - A very good performance